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Abstract. The dynamics of all physical systems can be understood in terms of their
invariant quantities. In this letter, we look at the invariant quantities of Relativistic
and Non Relativistic fluids of charged particles in order to understand the spontaneous
generation of magnetic seed fields which may have been responsible for magnetoge-
nesis in the early universe. We show how the invariants of Relativistic Magnetohy-
drodynamic systems naturally lead to the development of seed magnetic fields while
the invariants of non-relativistic magnetohydrodynamic systems will suppress such a
development.
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A significant volume of work has been performed in order to understand the
invariants of Non Relativistic Magnetohydrodynamic (MHD) systems in both
the compressible and incompressible regimes [1,5,7–13]. In such systems there
could be as many as 3 invariants; energy (E), and the psuedoscalars Cross
Helicity (HC) and Magnetic Helicity (HM ).

Table 1. Invariants for Ideal Non Relativistic MHD.

Case Mean Field Angular Velocity Invariants

I 0 0 E,HC , HM

II B0 6= 0 0 E,HC

III 0 Ω0 6= 0 E,HM

IV B0 6= 0 Ω0 = σB0 E,HP

V B0 6= 0 Ω0 6= 0 (B0 ×Ω0 6= 0 ) E

The Cross Helicity and Magnetic Helicity can be expressed as:

HC = 1
2

∫
V ·B d3x (1)

HM = 1
2

∫
A ·B d3x. (2)
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For the magnetofluid, V is the velocity of the fluid element, B is the magnetic
field and A is the vector potential. A conservation law is satisfied when the
time derivative of one of the terms above is zero. According to work by Yoshida
et al [4,14], in addition to 4-momentum, relativistic systems are expected to
conserve a quantity called Relativistic Helicity. It is defined below using the
canonical 4-momentum density, Pµ and vorticity, Ω = ∇×P, of the system.

κ = (P ·Ω,P0Ω + P × (∇P0 + ∂0P)) (3)

Here the canonical 4-momentum density P = (P0,P) is a combination of me-
chanical and electromagnetic momentum densities, Pµ = Pµ+eAµ. The conser-
vation of Relativistic Helicity is then effectively,

∫
∂µκ

µd3x = 0. If we ignore
the electromagnetic momentum and physical vorticity, we recover a relativistic
version of Cross Helicity Density, κC. If we set the particle’s kinetic momentum
to zero, we recover a relativistic version of Magnetic Helicity Density, κM.

κC = (P ·B,P0B−P×E) (4)

κM = (A ·B,A0B−A×E) (5)

Here the magnetic field is related to the vector potential by the equation,
B = ∇×A. The electric field is defined using the MHD conditions, E = B×V.
One can see that in the non relativistic limit, the Cross Helicity and Magnetic
Helicity should equate to those shown in Equation 1 and 2 assuming that mass
density is constant. Previous work by the author [3] has shown that only
Relativistic Helicity and Energy are conserved in Relativistic MHD systems,
see Figures 1-3. It can be shown that the four divergences of the Relativistic,
Cross and Magnetic Helicities for Relativistic MHD reduce to:

∂µκ
µ = 2Ω · (∇P0 + ∂0P) = 0 (6)

∂µκC
µ = −(∇ · V )(P ·B) 6= 0 (7)

∂µκM
µ = −2(∇ · V )(A ·B) 6= 0 (8)

Because ∂0P = −∇P0 = F, the four divergence of the Relativistic Helicity
is identically zero. However, the four divergences of the cross helicity and
magnetic helicity are not identically zero because the divergence of velocity is
not necessarily null and the Lorentz Transformations result in components of
the magnetic field and vector potentials parallel to the velocity vector. Note
that since the magnetic field and velocity perturbations are initially random,
there will be components of magnetic field that lie along the velocity vector,
relativistic effects will amplify these components.

B′ = γ(B− V(B ·V)−BV2

c2
)− (γ − 1)(B · V̂)V̂ (9)

A′ = γA− γA0

c2
V − (γ − 1)(A · V̂)V̂ (10)

For the non relativistic versions of Cross and Magnetic Helicity, we evaluate
their time derivatives below assuming conservation.

∂tHC = 1
2

∫
(∂V∂t ·B + V · ∂B∂t ) d3x = 0→ ∂B

∂t = − V̂
|V| (B ·

∂V
∂t ) (11)

∂tHM = 1
2

∫
(∂A∂t ·B + A · ∂B∂t ) d3x = 0→ ∂B

∂t = Â
|A| (B · ∇A0) (12)
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Fig. 1. The four-divergences of Cross Helicity and Magnetic Helicity Densities do
not approach zero. This appears true regardless of whether or not there is a mean
magnetic field and/or mean angular velocity. This is evidence that these are not
conserved quantities in Relativistic MHD Turbulence. Case 1 - no mean magnetic
field or angular momentum, Case 2 - nonzero mean magnetic field, Case 3 - nonzero
angular momentum, Case 4 - mean magnetic field and angular momentum aligned,
Case 5 - mean magnetic field and angular momentum perpendicular.
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Fig. 2. The four-divergence of Relativistic Helicity Density approaches zero regard-
less of whether or not there is a mean magnetic field and/or mean angular velocity.
This is evidence that this is a conserved quantity in Relativistic MHD Turbulence.
Case 1 - no mean magnetic field or angular momentum, Case 2 - nonzero mean mag-
netic field, Case 3 - nonzero angular momentum, Case 4 - mean magnetic field and
angular momentum aligned, Case 5 - mean magnetic field and angular momentum
perpendicular.

Equation 11 and 12 imply that ∂B
∂t is constrained by the relationship between

the magnetic field, acceleration and gradient of potential. The magnetic field
is on average perpendicular to any acceleration of the fluid. The Lorentz Force
and therefore acceleration should also be zero because of the MHD condition.
In addition, Equation 12 implies that a changing magnetic field can only result
from a magnetic field that is aligned with a potential gradient. This does not
occur on average unless there is a mean magnetic field. This could explain
why Magnetic Helicity is only conserved when a mean magnetic field does not
exist in the system. Because of this the non relativistic MHD equations will
tend to suppress any net change in the magnetic field of the system unless a
mean magnetic field exists initially. If the initial magnetic field is zero, these
equations clearly imply that the net field should remain zero. Relativistic MHD
systems don’t seem to suffer from the same problem. While the absence of an
initial magnetic field will cause the Cross and Magnetic Helicities to be zero,
there is no reason why they should remain as such since they are independent
of ∂B

∂t .
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In a turbulent MHD system, a magnetic field could be generated by the
electric field that results from variations in the concentrations of electric charges
in the plasma field. Biermann showed that this is related to small variations
in the density and temperature of the fluid [2,6].

E =
∇p

nq
= −
∇(nT

γ )

nq
. (13)

Here n is the number density of charges q. Such density variations can be
linked to temperature fluctuations, T, that are expected in a turbulent fluid.
These electric fields may then lead to the development of magnetic seed fields.
The seed fields can then be amplified by the dynamics of the MHD system. In
the case of non relativistic MHD, the potential amplification may by limited by
the constraints of Cross and Magnetic Helicity conservation described above,
resulting in a zero mean magnetic field. For relativistic systems, these con-
straints are nonexistent, allowing the magnetic fields to grown unconstrained.
Because of this, we see that Relativistic MHD systems have a more natural
tendency to develop seed magnetic fields while Non Relativistic MHD systems
tend to suppress the development of seed magnetic fields.
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