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Abstract. Ferromagnetic Ising model is investigated by means of Monte Carlo simu-
lations, with temperature randomly varying in time, which assumes randomly values
above and below the critical temperature in the consecutive simulation steps. It is
known that for mean-field coupling on-off intermittency and attractor bubbling can
be then observed, characterized by the sequence of laminar phases, during which the
magnetization is almost zero, and chaotic bursts, during which the system becomes
abruptly ordered. At the intermittency threshold distribution of the values of mag-
netization obeys a power scaling law. Here, possibility of the occurrence of analogous
phenomena is studied in the Ising model on d-dimensional square lattices and on
small-world networks which are obtained from the square ones by random rewiring
of edges (corresponding to non-zero exchange integrals) with probability p. For the
models on square lattices (p = 0) intermittent sequences of laminar phases and bursts
of magnetization are observed only for d ≥ 4; also only for d ≥ 4 the distributions
of values of magnetization exhibit power-law tails. For the models on small-world
networks (p > 0) such distributions occur for d ≥ 2. Thus, time series with certain
properties of on-off intermittency can be observed close to the phase transition point
in the above-mentioned generic models of statistical physics.
Keywords: on-off intermittency, attractor bubbling, Ising model.

On-off intermittency (OOI) appears in chaotoc systems in which the ob-
served signal forms a sequence of laminar phases, during which it is almost
constant and close to zero (the ”off” phase) and chaotic bursts (”on” state)
[1,2]. The system can stay in the laminar phase for a long time, after which
the burst can appear, i.e., rapid departure from, and return to, the ”off” state.
OOI occurs in systems which posses a chaotic attractor contained within an
invariant manifold with dimension smaller than that of the phase space. As
a control parameter is varied, this attractor can lose transverse stability as a
result of a supercritical blowout bifurcation [3], and a new attractor is formed
which encompasses that contained within the invariant manifold. Just above
the bifurcation threshold the phase trajectory spends most of the time in the
vicinity of the invariant manifold and only occassionally departs from it, which
results in the sequence of the laminar phases and bursts. In turn, if during the
laminar phases instead of approaching zero the signal shows fluctuations with
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amplitude small in comparison with that of chaotic bursts, the corresponding
phenomenon is called attractor bubbling (AB) [2,4]. AB appears in systems
with OOI under the influence of the internal or external noise, which amplifies
local transverse inastabilities in the attractor contained within the invariant
manifold [2]. This results in the appearance of intermittent bursitng below the
blowout bifurcation threshold. OOI and AB were observed in many nonlinear
dynamical systems, e.g., in model maps with time-dependent control param-
eter [1], in systems of coupled chaotic oscillators close to the synchronization
threshold, where the invariant manifold is the synchronization manifold [5], in
chaotic dynamics of spin waves [6], microscopic models of financial markets
[7,8], etc.

It is interesting to note that OOI and AB can occur in many-body sys-
tems of statistical physics, e.g., in the Ising and Ising-like models [8-10] or
electroconvection of nematic liquid crystals [11], under the influence of random
variation of external parameters (the temperature or the elecric voltage in the
two above-mentioned cases, respectively). In particular the ferromagnetic Ising
model with temperature randomly varying in time can switch intermittently
between the paramagnetic and ordered phase, which results in the sequence of
the laminar phases and bursts in the time series of magnetization, treated as
the signal. In the latter case OOI and AB have been observed so far in the
Ising model with mean-field (MF) coupling [9]. The purpose of this paper is
to show that these phenomena can appear also if the MF approximation is not
exact, e.g., in the d-dimesnional Ising model with d = 2, 3, 4 . . . and, possibly, a
small fraction of random connections corresponding to long-range exchange in-
teractions between distant spins. It should be emphasized that the Ising model
is a stochastic one (Glauber thermal bath dynamics is used in the Monte Carlo
(MC) simulations), and the intermittency typical of dynamical systems ap-
pears in it as a result of interactions among a large number of stochastic units
(spins). Thus the name ”emergent” OOI and AB can be given to this kind of
intermittent phenomena.

The model investigated in this paper is the ferromagnetic Ising model on a
network which can be either a usual d-dimensional square lattice, with d ≥ 2,
or a small-world network obtained from the d-dimensional square lattice by
random cutting and rewiring of edges [12]. For the latter purpose, each edge of
the square lattice is cut with probability p and rewired so that one (randomly
selected) end remains attached to an old node while the other one is attached
to a new node, chosen randomly from among all nodes in the network. Multiple
connections between nodes, self-connections and cutting edges once rewired are
forbidden. The probability p controls the degree of randomness in the network:
in particular, for p = 0 the network is the d-dimensional square lattice, and for
p = 1 it is a random graph. The spins σi, i = 1, 2, . . . N , N = Ld, where L is
the size of the original square lattice and N is the number of spins, have two
possible orientations, σi = ±1, and are located in the nodes of the network.
The exchange integral between the spins σi, σj is Jij = J > 0 if there is an
edge between nodes i, j, and Jij = 0 otherwise; hence, for p > 0 a certain
fraction of long-range interactions between spins is present. The Hamiltonian
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for the model is

H = −
N∑

i,j=1

Jijσiσj . (1)

MC simulations of the above-mentioned model are performed with temper-
ature randomly varying in time, T (t) = T0 − T1ξ(t), where the discrete time
steps t are equivalent to the consecutive MC simulation steps (each step corre-
sponding to asynchronous updating of all N spins), ξ(t) is a random variable
with uniform distribution on the interval (0, 1), and T0, T1 are constants. The
model obeys the Glauber thermal-bath dynamics, with the transition rates be-
tween two spin configurations which differ by a single flip of one spin, e.g., that
in the node i, in the form

wi (σi, t) =
1

2

[
1− σi tanh

(
Ii
T (t)

)]
, (2)

where
Ii = J

∑
j∈Ki

σj (3)

is a local field acting on the spin i, and the sum in Eq. (3) runs over all
neighbors of the node i (in particular, in the case of the d-dimensional square
lattice, corresponding to p = 0, there are z = 4, 6, 8 . . . nearest neighbors for
d = 2, 3, 4 . . ., where z is the coordination number). Let us emphasize that
the transition rates (2) depend on time due to the time dependence of the
temperature T (t).

For T1 = 0 the models under study with d = 2, 3, 4 . . . show ferromagnetic
phase transition for p ≥ 0, and the critical temperature Tc for given d is an
increasing function of p. The order parameter is, of course, the magnetization
M = N−1

∑N
i=1 σi. Henceforth in the MC simulations it is always assumed that

T0 > Tc for given d, p and the network size N . For T1 > 0 the magnetization
cannot be treated as the (static) order parameter since it can become dependent
on time, in particular if T0 − T1 < Tc. Instead, the statistical properties of the
time series M(t) can be analyzed to search for the occurrence of the OOI or
AB.

In the MF approximation, and in the thermodynamic limit, the equation
for the time dependence of the magnetization becomes

M(t+ 1) = tanh

(
J〈z〉
T (t)

M(t)

)
≈ J〈z〉
T (t)

M(t), (4)

where 〈z〉 is the average coordination number (〈z〉 = z = 4, 6, 8 . . . for p = 0 and
d = 2, 3, 4 . . .), and the approximate equality is valid for M ≈ 0. For T1 = 0
and T (t) = T0 = const the magmetization M(t) for t→∞ converges to zero if

T0 > T
(mf)
c = 〈z〉J , i.e., above the MF critical temperature, which corresponds

to the paramagnetic phase, and to a non-zero value if T0 < T
(mf)
c , which

corresponds to the ordered phase. For T1 > 0 Eq. (4) can be treated as a one-
dimensional map describing the evolution of the magnetization M(t) in discrete
time t. This map possesses an invariant manifold M(t) ≡ 0, corresponding
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to the paramegnetic phase, and the temperature T (t) is a (random) variable
describing the dynamics of the two-dimensional system (M(t), T (t)) within this
manifold. The map (4) belongs to a general class of systems xt+1 = f (xt, ηt)
which after linearization in the vicinity of the invariant manifold xt ≡ 0 have
a form of multiplicative noise, xt+1 = ηtxt, where ηt is a random variable.
As the strength of the noise ηt rises the manifold xt ≡ 0 loses stability via
supercritical blowout bifurcation and OOI in the time series of xt is observed;

in Eq. (4), since T0 > T
(mf)
c , this happens as T1 is increased. In fact, OOI

was observed in Eq. (4) as well as in the time series of magnetization obtained
from MC simulations of the Ising model with temperature randomly varying in
time and with MF coupling [9], where Eq. (4) is strict for N → ∞, as T1 was
increased above the threshold value for the blowout bifurcation. Besides, in
the MC simulations AB was also observed, i.e., chaotic bursts of magnetization
which occurred for T1 < T0 − Tc, below the intermittency threshold, due to
thermal fluctuations (internal noise) which destabilize the invariant manifold
(the paramagnetic state) in finite-size systems.

In the cases studied in this paper neither OOI nor AB occur in the two-
and three-dimensional Ising model on square lattices (for p = 0 and d = 2, 3,
T0 > Tc and 0 < T1 < Tc): the magnetization exhibits only small fluctuations
around zero (Fig. 1(a,c)). However, addition of even a small fraction of rewired
edges (p > 0) leads to the occurrence of chaotic bursts in the time series of
M(t) typical of AB for large enough T1 in the models with d = 2, 3 (Fig. 1(b)).
In contrast, in the four-dimensional Ising model bursts in the time series of
M(t) occur both for p = 0 (the square lattice, Fig. 1(d)), if T0 is slightly above
Tc and T1 is large enough, and for p > 0 (the small-world network, Fig. 1(e,f)),
in a much wider range of the parameters T0, T1.

A characteristic feature of OOI is the distribution of lengths τ of laminar
phases at the intermittency threshold, P (τ) ∝ τ−3/2 [1]; in the case of AB,
due to the presence of noise, long laminar phases are less probable to occur
and the tail of the distribution becomes exponential [4]. In the models studied
in this paper, even for N ' 104, the thermal fluctuations were too strong to
observe the power scaling law, and even for short laminar phases the distribu-
tion P (τ) decreased exponentially. Another characteristic feature of AB is the
distribution of the values of the measured signal which exhibits power-law tails
[13,14]. In the two- and three-dimesional Ising model on square lattices (for
p = 0 and d = 2, 3, T0 > Tc and 0 < T1 < Tc) the distributions P (M) have ex-
ponential rather than power-law tails (Fig. 2(a,b)), which confirms that no AB
occurs. In contrast, in the Ising model on small-world networks with d = 2, 3
and p > 0 the tails of the distributions of magnetization obey the power scaling
law, P (M) ∝M−α, α > 0, for a certain range of T0 > Tc and large enough T1
(Fig. 2(a,b)). In the four-dimensional Ising model on the square lattice (d = 4,
p = 0) for T0 just above Tc and large enough T1 the distribution P (M) obeys
the power scaling law on a narrow interval; otherwise, P (M) has exponential
tails (Fig. 2(c)). For d = 4 and the small-world networks with p > 0 the tails of
the distribution of the magnetization obey a power scaling law P (M) ∝ M−α

for a wide range of the parameters T0, T1 (Fig. 2(d)). These results confirm
that the occurrence of bursts in the time series of magnetization shown in Fig.
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Fig. 1. Time series of magnetization M(t) for the models with (a) d = 2, L = 256,
p = 0 (two-dimensional square lattice), T0 = 2.45, T1 = 2.44; (b) d = 2, L = 256,
p = 0.2 (small-world network obtained from the two-dimensional square lattice),
T0 = 3.25, T1 = 3.24; (c) d = 3, L = 40, p = 0 (three-dimensional square lattice),
T0 = 4.60, T1 = 4.59; (d) d = 4, L = 16, p = 0 (four-dimensional square lattice),
T0 = 6.75, T1 = 6.74; (e) d = 4, L = 16, p = 0.2 (small-world network obtained from
the four-dimensional square lattice), T0 = 10.0, T1 = 9.99; (f) d = 4, L = 16, p = 0.2,
T0 = 7.35, T1 = 7.34.

1 (b,d,e,f) for the cases d = 2, 3, p > 0 and d = 4, p ≥ 0 can be attributed to
AB. In general, if the power scaling law P (M) ∝M−α is observed the exponent
α > 0 decreases as T0 approaches Tc from above and as T1 is increased (Fig.
2(b,d)), since this leads to stronger and more frequent bursts in the time series
of magnetization (Fig. 1(e,f)).

The above-mentioned results show that if the temperature varies randomly
in time within a certain interval AB can be observed in the Ising model on
small-world networks obtained from the two- and three-dimensional square
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Fig. 2. Distributions of the magnetization P (M) (solid lines) and possible fits of the
power scaling laws to the tails of the distributions (dashed lines) for the models with
(a) d = 2, L = 256 and p = 0, T0 = 2.45, T1 = 2.44 (curve (a)), p = 0.2, T0 = 3.25,
T1 = 1.00 (curve (b)), p = 0.2, T0 = 3.25, T1 = 3.24 (curve (c)); (b) d = 2, L = 256
and p = 0.2, T0 = 4.25, T1 = 4.24 (curve (a)), d = 2, L = 100 and p = 0.2, T0 = 3.25,
T1 = 3.24 (curve (b)), d = 3, L = 40 and p = 0.0, T0 = 4.60, T1 = 4.59 (curve (c)); (c)
d = 4, L = 16, p = 0 and T0 = 6.75, T1 = 1.0 (curve (a)), T0 = 6.75, T1 = 6.74 (curve
(b)), T0 = 7.75, T1 = 7.74 (curve (c)); (d) d = 4, L = 16, p = 0.2 and T0 = 10.0,
T1 = 9.99 (curve (a)), T0 = 8.0, T1 = 7.99 (curve (b)), T0 = 7.35, T1 = 7.34 (curve
(c)).

lattices by cutting and rewiring edges with probability p > 0. Due to the
presence of shortcuts the interactions between spins have a MF character to
some degree, but only for p = 1 the network becomes a random graph and the
MF approximation, Eq. (4) becomes exact. Thus, AB can occur even if the
MF approximation is not strict. In the four-dimensional Ising model AB can
be observed both in the case of square lattice and the small-world network.
Thus, the critical dimension for the occurrence of AB in the Ising model on a
square lattice, with temperature randomly varuing in time, is d = 4.
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It should be mentioned that a class of models similar to the ones consid-
ered in this paper was used in Ref. [10] to simulate the time series of price
returns in the stock market. The two possible orientations of spins (agents)
corresponded to the decisions to sell or to buy stocks, and instead of tempera-
ture varying randomly in time, exchange integrals between pairs of interacting
agents varied randomly in time around the average which was also a random
function of time. The agents were placed on a two-dimensional square lattice,
and interactions with the first, second, third, etc. nearest neighbors were taken
into account; then, small-world networks were also constructed by randomly
cutting and rewiring edges with probability p. Parallel updating of the states
of all agents was performed. Such Ising-like multi-agent models based on the
social impact theory [15] are often used to reproduce so-called ”stylized facts”,
or universal properites of the fluctuations of the stock prices [16]. In particular,
the probability distributions of the stock price returns obtained from MC sim-
ulations, proportional to the magnetization, could exhibit power-law tails for
p > 0, which is typical of the empirical distributions of returns. Also the time
series of returns (magnetization) exhibited the empirically observed ”volatility
clustering”, i.e., a sequence of quiescent (laminar) phases and bursts.

The results of the present paper as well as these of Refs. [8-11] confirm that
”emergent” OOI and AB are ubiquitous phenomena in many-body systems of
statistical physics. In the Ising model studied in this paper the appearance
of OOI in the time series of magnetization can be easily understood within
the MF approximation: as the amplitude of the stochastic variation of the
external parameter (temperature) increases the invariant manifold M = 0,
corresopnding to the paramagnetic phase, loses transverse stability as a result
of the blowout bifurcation; in finite-size systems the occurrence of chaotic bursts
of magnetization is facilitated due to interal noise (thermal fluctuations) and
AB is observed. However, the results of the MC simulations show that similar
intermittent phenomena occur even if the MF approximation is not exact.
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