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Abstract. In this paper, a modified Leslie-Gower predator-prey discrete model with
Michaelis-Menten type prey harvesting is investigated. It is shown that the model
exhibits several bifurcations of codimension 1 viz. Neimark-Sacker bifurcation, tran-
scritical bifurcation and flip bifurcation on varying one parameter. The extensive
numerical simulation is performed to demonstrate the analytical findings. The sys-
tem exhibits periodic solution including flip bifurcation, Neimark-Sacker bifurcation
followed by the wide range of dense chaos. .
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1 Introduction

The resource-consumer species interaction is one of the most common and focal
research area in the field of mathematical biology. The dynamics of population
models is concerned with population size, age distribution and many other nat-
ural factors. In biological systems, there are a number of models in which time
is taken as a continuous function [1–3]. For population model this could be
seen as a overlapping situation which implies a continuous series of birth and
death processes and these models are usually performed by ordinary differential
equations.
The discrete time population models are pertinent for non-overlapping gener-
ation models [4–6] and thus seems to be more realistic than continuous one.
Many researchers investigated discrete-time models and gave interesting dy-
namics of the system by exploring several type of bifurcations [7–11].
The Lotka-Volterra prey-predator model with discrete time was firstly intro-
duced by Maynard Smith [12] and studied by Levine [13] and Liu and Xiao
[14]. It has been shown that these discrete time models undergo several bifurca-
tions such as fold bifurcation, flip bifurcation and Neimark-Sacker bifurcation.
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Moreover, Hadelar and Gerstmann [15] were the first who derives a discrete
time model involving Holling type-II functional response using continuous time
model. Also the complete discussion for the bifurcations of codimension 1 and
parametric restriction for non-hyperbolicity has been done by Li and Zhang
[16]. In another study, the authors discussed the chaotic dynamics of a discrete
prey-predator model with Holling type-II functional response [6]. Singh and
Deolia investigated a discrete-time the prey-predator model with Leslie-Gower
functional response [11]. In their study the system exhibited Neimark-Sacker
bifurcation, flip bifurcation and fold bifurcation under certain conditions.

2 Mathematical Model

Aziz-Alaoui and Daher Okiye [17] proposed the following two-dimensional prey-
predator model with modified version of Leslie-Gower and Holling type II func-
tional response:

dx

dt
=

(
r1 − b1x−

a1y

k1 + x

)
x

dy

dt
=

(
r2 −

a2y

k2 + x

)
y (1)

with positive initial conditions x(0) ≥ 0 and y(0) ≥ 0, when x(t) and y(t)
represent the population densities at time t. Here r1 denotes growth rate of
prey and b1 represents strength of competition among individuals in prey. The
parameter k1(k2) signifies the extent of protection provided by environment to
the prey (predator) and r2 describes the growth rate of y. a1(a2) measures
the maximum value per capita reduction rate of prey x (predator y). All the
parameters are assumed to be positive.
The model (1) with Michaelis-Menten type harvesting under the assumption
that same extent (k1 = k2 = k) to which environment provided protection to
both the predator and prey [18,19] is given by:

dx

dt
=

(
r1 − b1x−

a1y

k + x

)
x− cEx

m1E +m2x

dy

dt
=

(
r2 −

a2y

k + x

)
y (2)

Here c signifies catchability coefficient and E denotes harvesting effort in prey
species. Where m1 and m2 are suitable constants. All the parameters are
assumed to be positive and similar meaning as of (1).
To investigate the dynamics of the system (2), the following non-dimensional
scheme is taken:

x =
r1x

b1
, t =

t

r1
, y =

r2
1y

ab21

p =
1

b1
, α =

cEb1
m2r2

1

, γ =
b1k

r1
, δ =

m1Eb1
m2r1

, β =
r2

r1
, q =

a2

a1b1
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Using the above scheme, we get the following non-dimensional system:

dx

dt
= x

(
1− x− py

γ + x
− α

δ + x

)
dy

dt
= βy

(
1− qy

γ + x

)
(3)

with the initial conditions x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.

Gupta and Chandra [20] investigated the continuous-time model (3) and
determined several local bifurcations viz. Hopf bifurcation, saddle-node, tran-
scritical bifurcation and Bogdanov-Takens bifurcation.
In order to derive discrete time model from the system (3) employing forward
Euler scheme and taking ε is the step size. Letting ε→ 1 then (n+1)th genera-
tion of the prey-predator population is governed by following set of equations:,
it is obtained

xn+1 = xn + xn

(
1− xn −

pyn
γ + xn

− α

δ + xn

)
yn+1 = yn + βyn

(
1− qyn

γ + xn

)
(4)

with initial conditions x(0) = x0, and y(0) = y0.
Now, the discrete time prey-predator model can be defined by a mapping

G :

(
x
y

)
→

x+ x
(

1− x− py
γ+x −

α
δ+x

)
y + βy

(
1− qy

γ+x

)  (5)

The map (5) is considered for the region Ω = R+
2 = {(x, y) : x ≥ 0, y ≥ 0}.

3 Existence and stability of fixed points

This section illustrates the existence and stability of the fixed points of the
map (5).
The fixed points of the map (5) are summarized as follows:

1. The trivial fixed point is E0(0, 0).
2. The semitrivial fixed points are Ex1,2

(x1,2, 0), where

x1,2 =
1

2

(
1− δ ±

√
(1− δ)2 − 4(α− δ)

)
,

δ < 1 and (δ + 1)2 > 4α.
• If α > δ, then Ex1,2

(x1,2, 0) both exits provided (δ + 1)2 > 4α, δ < 1.
• If α < δ, then Ex1

exists only.
3. Another semitrivial fixed points is Ey(0, γq ).
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4. The positive fixed points are E(xy)1,2 = (x∗1,2, y
∗
1,2), where y∗1,2 =

γ+x∗
1,2

q and

x∗1,2 = 1
2

(
(1− δ − p

q )±
√

(1− δ − p
q )2 − 4δ(pq + α

δ − 1)
)

, where p
q+ α

δ > 1.

• E(xy)1,2 both exists, when p
q+δ < 1 and

(
1− δ − p

q

)2

> 4δ
(
p
q + α

δ − 1
)
.

• If
(

1− δ − p
q

)2

= 4δ
(
p
q + α

δ − 1
)

, then Ē(x̄, ȳ) exists, where x̄ = 1
2 (1−

δ − p
q ) and ȳ = γ+x̄

q .

• If
(

1− δ − p
q

)2

< 4δ
(
p
q + α

δ − 1
)

, no positive fixed point exists.

The Jacobian matrix for the discrete map (5) as arbitrary fixed point (x̂, ŷ) is
given as

J(E) =

 2−
(

2x̂+ pγŷ
(γ+x̂)2 + αδ

(δ+x̂)2

)
− px̂
γ+x̂

qβŷ2

(γ+x̂)2 1 + β
(

1− 2qŷ
γ+x̂

) .

The corresponding characteristic equation is written as

λ2 − Trλ+Det = 0 (6)

where

Tr = 3 + β − 2x̂− pγŷ

(γ + x̂)2
− αδ

(δ + x̂)2
− 2βqŷ

γ + x̂

Det =

(
2− 2x̂− pγŷ

(γ + x̂)2
− αδ

(δ + x̂)2

)(
1 + β − 2βqŷ

γ + x̂

)
+

pqβx̂ŷ2

(γ + x̂)3

The dynamical behavior of the fixed points can be classified by the following
lemma:

Lemma 1. Consider a polynomial τ(λ) = λ2 − Trλ + Det, λ1 and λ2 be the
eigenvalues. Suppose τ(1) > 0 then

1. |λ1| < 1 and |λ2| < 1 if and only if τ(−1) > 0 and Det < 1;

2. |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if τ(−1) < 0;

3. |λ1| > 1 and |λ2| > 1 if and only if τ(−1) > 0 and Det > 1;

4. λ1 = −1 and λ2 6= 1 if and only if τ(−1) = 0 and Tr 6= 0, 2;

5. λ1 and λ2 are complex conjugate and |λ1| = |λ2| if and only if (Tr)2 −
4Det < 0 and Det = 1.

3.1 Dynamical behavior around the trivial fixed point E0(0, 0):

The Jacobian of (5) has eigenvalues λ1 = 2− α
δ and λ2 = 1 + β at trivial fixed

point E0. The fixed point E0 is a saddle when α > δ, a source when α < δ and
non-hyperbolic for both conditions α = δ and α = 3δ.



Chaotic Modeling and Simulation (CMSIM) 3: 179–189, 2021 183

3.2 Dynamical behavior around the semitrivial fixed points:

(a) The eigenvalues of the Jacobian of the map (5) are λ1 = 2−2x1,2− αδ
(δ+x1,2)2

and λ2 = 1 + β at semitrivial fixed point Ex1,2
(x1,2, 0). Ex1,2

is a saddle

point if 1 < 2x1,2 − αδ
(δ+x1,2)2 < 3, a source if 0 ≤ 2x1,2 − αδ

(δ+x1,2)2 <

1 and non-hyperbolic for both the conditions 2x1,2 − αδ
(δ+x1,2)2 = 1 and

2x1,2 − αδ
(δ+x1,2)2 = 3.

(b) The eigenvalues are λ1 = 2 − p
q −

α
δ and λ2 = 1 − β at semitrivial fixed

point Ey(0, γq ).

3.3 Dynamical behavior at positive fixed point Exy(x∗, y∗):

The characteristic polynomial at Exy(x∗, y∗) is obtained as

τ(λ) = λ2 − (3− β −A)λ+ (2−A+ β(B − 2))

where A(x∗) = 2x∗ + pγ
q(γ+x∗) + αδ

(δ+x∗)2 and B(x∗) = 2x∗ + p
q + αδ

(δ+x∗)2 . The

stability of the positive fixed point Exy can be discussed by using the following
results. The positive fixed point Exy(x∗, y∗) is said to be stable if:

Tr(J(Exy))−Det(J(Exy)) < 1
Tr(J(Exy)) +Det(J(Exy)) > −1
Det(J(Exy)) < 1.

(7)

Theorem 1. The dynamical behavior of the map (5) at positive fixed point
Exy(x∗, y∗) is concluded as follows:

1. Sink when 2(A−3)
B−3 < β < A−1

B−2 .

2. Source when β > max
{
A−1
B−2 ,

2(A−3)
B−3

}
or β < 2(A−3)

B−3 .

3. Non-hyperbolic if one of the following condition holds:

(a) β = 2(A−3)
B−3 , β 6= A−2

B−2 and β 6= A
B−2 .

(b) β = A−1
B−2 and (1 + β +A)2 < 4Bβ + 8.

4 Bifurcation of codimension 1

This subsection determines the conditions of occurrence of flip bifurcation and
Neimark-Sacker bifurcation at positive fixed point Exy(x∗, y∗)

Theorem 2. (i) Flip bifurcation is occurred at β = 2(A−3)
B−3 (ii) Neimark-

Sacker bifurcation is occurred at β = A−1
B−2 around the positive fixed point

Exy(x∗, y∗) in map (5).

Proof.: It is clear, the Jacobian J has eigenvalues |λ1| 6= 1 and λ2 = −1 at the

positive fixed point Exy(x∗, y∗) for β = 2(A−3)
B−3 . i.e. Exy is non-hyperbolic.

Let u = x − x∗, v = y − y∗ and µ = β − β1, where β1 = 2(A−3)
B−3 . The fixed
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point Exy(x∗, y∗) is shifted to the origin and expanding the right-hand side of
map (5), it yields(

u
v

)
→

a11u+ a12v + a13uv + a14u
2 + a15u

2v +O(|u, v|4)
b11u+ b12v + b13µ+ b14v

2 + b15µv + b16u
2 + b17µu

+b18uv + b19uv
2 +O(|u, v|4)

. (8)

where a11 = 2 − 2x∗ − αδ
(δ+x∗)2 −

pγy∗

(γ+x∗)2 , a12 = − px∗

γ+x∗ , a13 = − pγ
(γ+x∗)2 ,

a14 =
(

αδ
(δ+x∗)3 + pγy∗

(γ+x∗)3 − 1
)

, a15 = pγ
(γ+x∗)3 , b11 = qβ1(y∗)2

(γ+x∗)2 , b12 = 1 +

β1

(
1− 2qy∗

γ+x∗

)
, b13 = y∗

(
1− qy∗

γ+x∗

)
, b14 = − qβ1

γ+x∗ , b15 =
(

1− 2qy∗

γ+x∗

)
, b16 =

− qβ1(y∗)2

(γ+x∗)3 , b17 = q(y∗)2

(γ+x∗)2 , b18 = 2qβ1y
∗

(γ+x∗)2 and b19 = − qβ1(y∗)2

(γ+x∗)3

Now linearizing the map (8) at (0, 0) and forming an invertible matrix,

T =

λ1 − a11 −a11 − 1 0
a12 a12 0
0 0 1

 .

By using the transformation

u
v
µ

 = T

X
Y
w

 , the map (8) turns into

X
Y
w

→
λ1 0 0

0 −1 0
0 0 1

X
Y
w

+

 F1(X,Y,w)
G1(X,Y,w)

0


where

F1(X,Y,w)= k1X
2 + k2Y

2 + k3XY + k4X
2Y + k5XY

2 + k6X
3 +O(|X,Y |4)

G1(X,Y,w)= e1Y
2 + e2wY + k3wX + e4XY + e5X

2 + e6X
3 + e7Y

3 +O(|X,Y |4).

Here k1 = a12a13(λ1−a11)+a14(λ1−a11)2, k2 = a14(1+a11)2−a12a13(1+a11),
k3 = a12a13(λ1−a11)−a12a13(1+a11)−2a14(λ1−a11)(1+a11), k4 = a15(λ1−
a11)2 − 2a15(λ1 − a11)(1 + a11), k5 = 2a15(1 + a11)2 − 2(λ1 − a11)(1 + a11),
k6 = a15(λ1−a11)2, e1 = b14+b16(1+a11)2−b18(1+a11), e2 = b15−b17(1+a11),
e3 = b15 + b17(λ1 − a11), e4 = 2b14 − 2b16(λ1 − a11)(1 + a11) + b18(λ1 − a11)−
b18(1 + a11), e5 = b14 + b16(λ1 − a11)2 + b18(λ1 − a11), e6 = a2

12(λ1 − a11) and
e7 = −a2

12(1 + a11)
To discuss the stability of (X,Y ) = (0, 0) near w = 0, the center manifold is
considered as

Zc(0) = {(X,Y,w) ∈ R3|X = S(Y,w), S(0, 0) = 0, DS(0, 0) = 0},

here X and w are sufficiently small. Let

S(Y,w) = S1w
2 + S2wY + S3Y

2 +O(|Y,w|3). (9)

Then

κ(S(Y,w), w) = S(−Y +G1(S(Y,w), Y, w))−λ1S(Y,w)−F1(S(Y,w), Y, w) = 0.
(10)
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Substituting (9) into (10) and comparing the coefficients of (10) we obtain
S1 = S2 = 0 and S3 = k2

1−λ1
.

Then the map (8) restricted to the center manifold is given by

Y ∼ G̃1(Y,w) = e1Y
2 − Y + e2wY + e3S3wY

2 + e4S3Y
3 + e5S

2
3Y

4 + e7Y
3 +O|Y,w|5

It can be seen that G̃1(0, 0) = 0, ∂G̃1

∂Y (0, 0) = −1, ∂G̃1

∂w (0, 0) = 0, ∂2G̃1

∂Y 2 (0, 0) =

2e1 6= 0, ∂
2G̃1

∂Y w (0, 0) = e2 6= 0 and ∂3F̃1

∂Y 3 (0, 0) = 6(e4S3 + e7).

%1 =

(
1

2

∂F̃1

∂w

∂2F̃1

∂X2
+
∂2F̃1

∂Xw

)

%2 =

(1

2

∂2F̃1

∂X2

)2

+
1

6

∂3F̃1

∂X3


From above equation, %1 = e2 6= 0 and %2 = e4S3 + e2

1 6= 0 (see more details
[21,22]).
Therefore, the map (5) occurs flip bifurcation at fixed point Exy for bifurcation

parameter β = 2(A−3)
B−2 .

(ii) Now, we discuss Neimark-Sacker bifurcation at fixed point Exy is non-
hyperbolic at β = A−1

B−2 for |λ1| = 1, |λ2| = 1.
We transform the fixed point Exy(x∗, y∗) to the origin and expand the right-
hand side of map (5) around the origin by using following translation u = x−x∗,
v = y − y∗ and β1 = A−1

B−2 . The map (5) yields(
u
v

)
→
{
a11u+ a12v + a13uv + a14u

2 + a15u
2v +O(|u, v|4)

b11u+ b12v + b13uv + b14u
2 + b15v

2 + b16u
2v + b17uv

2 +O(|u, v|4)
(11)

where a11 = 2− 2x∗ − αδ
(δ+x∗)2 −

pγy∗

(γ+x∗)2 , a12 = − px∗

γ+x∗ , a13 = − pγ
(γ+x∗)2 , a14 =(

αδ
(δ+x∗)3 + pγy∗

(γ+x∗)3 − 1
)

, a15 = pγ
(γ+x∗)3 , b11 = qβ(y∗)2

(γ+x∗)2 , b12 = 1+β
(

1− 2qy∗

γ+x∗

)
,

b13 = 2qβy∗

(γ+x∗)2 , b14 = − qβ(y∗)2

(γ+x∗)3 , b15 = − qβ
γ+x∗ , b16 = − 2qβy∗

(γ+x∗)3 , b17 = qβ
(γ+x∗)2 .

Let us consider the following set of complex eigenvalues, obtained by linearizing
the map (11) at (0, 0)

λ1,2 =
m(β)± ι

√
4n(β)− (m(β))2

2

with |λ1,2| =
√
n(β), followed by the transversality condition(

d|λ1,2|
dβ

)
β= A−1

B−2

=
−1

2

√
n
(
A−1
B−2

) 6= 0.

It is required to verify nondegeneracy condition λj1,2 6= 1, j = 1, 2, 3, 4 which
is equivalent to m(β) 6= 0,−1 i.e. A 6= 4

B−1 and A 6= B+2
B−1 .
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Now, assume an invertible matrix

T =

[
a12 0

M − a11 N

]
M = m(β)

2 , N =
√

4n(β)− (m(β))2.
The map (11) becomes(

X
Y

)
→
(
M −N
N M

)(
X
Y

)
+

(
F1(X,Y )
G1(X,Y )

)
(12)

F1(X,Y ) = k11X
2 +K22X

3 + k33XY + k44X
2Y +O(|X,Y |4)

G1(X,Y ) = e11X
2 + e22Y

2 + e33XY + e44X
2Y + e55X

3 +O(|X,Y |4),

k11 = a12a13(M−a11)+a2
12a14, k22 = a2

12a15(M−a11), k33 = −a12a13N , k44 =
−a2

12a15N , e11 = a12b13(M −a11) +a2
12b14 + b15(M −a11)2 +a12b17(M −a11)2,

e22 = (b15 +a12b17)N2, e33 = −N(a12b13 + 2b15(M −a11) + 2a12b17(M −a11)),
e44 = −a2

12b16N and e55 = b16a
2
12(M − a11).

It is easily noticed that (12) is exactly in form of center manifold, the non-
degeneracy condition for the Neimark-Sacker bifurcation is given by

β̂ = −Re
(

(1− 2λ)λ̄2

1− λ
Φ11Φ20

)
− 1

2
|Φ11|2 − |Φ02|2 +Re(λ̄Φ21) (13)

where

Φ20 =
1

4
[k11 + e33 + i(e11 − e22 − k33)](0,0)

Φ11 =
1

2
[k11 + i(e11 + e22)](0,0)

Φ02 =
1

4
[k11 − e33 + i(e11 − e22 + k33)](0,0)

Φ21 =
1

8
[3k22 + e44 + i(3e55 − k44)](0,0) .

Thus, the aforementioned argument provides following theorem for the occur-
rence of Neimark-Sacker bifurcation [21,22]:

Theorem 3. The map (5) undergoes Neimark-Sacker bifurcation if the both

conditions β 6= 3 − A and β 6= 4 − A holds and β̂ 6= 0 at fixed point Exy.

Moreover, if β̂ < 0 (β̂ > 0) then a unique closed invariant curve bifurcates at
β = A−1

B−2 which is supercritical (subcritical) and asymptotically stable (unsta-
ble).

5 Numerical Simulation

In order to substantiate the obtained results and explore the complex dynamics
in the map (5), the numerical simulation is performed for the following set of
parameters [20]:

p = 0.40, q = 1.0, α = 0.10, γ = 0.10, δ = 0.05, β = 0.25
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For these set of parameters, the stability conditions of the fixed point Exy(x∗, y∗)
are satisfied. Fig.1 shows the stable dynamics in the system (5). It confirms
that both species coexist and converge to fixed point Exy(0.35, 0.45).
For these parameters, the results of first part of theorem 2 holds i.e. %1 =
−3.13426, %2 = 2741.9, hence the system (5) undergoes flip bifurcation at Exy
and as %2 > 0 which shows period-2 point and its stability. Fig.2 gives bi-
furcation diagram for the parameter β at α = 0.095 (without changing other
parameters). The system (5) exhibits flip bifurcation followed by chaos (pe-
riod doubling route to chaos) at the parameter β. The system shows a stable
window upto β = 2.3, followed by a cascade of period doubling. Further a
dense chaotic region is occurred for β ∈ (2.862, 3.012) along with intermittent
quasi periodic windows at (2.94, 2.952) which ends to a stable window beyond
β = 3.012. The maximal Lyapunov exponent (MLE) for the same values is
plotted in fig.3. The positive value of Lyapunov exponent confirms the pres-
ence of chaos in the system.

Further for substantiating the results of theorem 2(ii), we choose the new set
of parameters

p = 0.9, q = 2.0, α = 0.1695, γ = 0.10, δ = 0.3

The value of nondegeneracy condition for Neimark-Sacker bifurcation is β̂ =
−0.13563 < 0. According to theorem 3, the fixed point Exy is stable when
β < β1, E∗

xy loses its stability and becomes unstable, a closed invariant curve

appears when β > β1. And β̂ < 0, supercritical NSB is occurred. The bifurca-
tion diagram is plotted in (β, x) plane at β1 = 0.245 in fig.4, a closed invariant
curve appears.

6 Conclusion

In this paper, a discretized form of a modified Leslie-Gower prey-predator
model with Michaelis-Menten type harvesting in prey, has been studied. Bifur-
cation theory and center manifold theory has been employed to exhibit various
bifurcations of codimension 1 viz. Neimark-Sacker bifurcation, flip bifurcation.
The approximate expression of bifurcation curves is also determined.The nu-
merical simulation gives an extensive presentation about occurrence of different
bifurcation and chaos.
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Fig. 1. Bifurcation diagram w. r. to β
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Fig. 2. Stable time series at β = 0.25
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Fig. 3. Maximal Lyaupnov exponent w. r. to β

Fig. 4. NSB diagram w. r. to β


