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Abstract. In this paper, we consider two different two-dimensional nonlinear maps
like Burgers map and Predator-Prey model map driven by a biharmonic signal. The
biharmonic signal consists of two signals of widely different frequencies ω and Ω
with Ω >> ω. These maps are interest because they appear in different physical
concepts and they are produced a much richer set of dynamic patterns than those
observed in continuous one. In both maps, VR occurs at the low-frequency (ω) of
the biharmonic signal as the amplitude (g) and frequency (Ω) of the high-frequency
signal is varied. We show the enhanced response amplitude at the low-frequency ω
showing the resonance peak and hysteresis phenomenon on the response amplitude
curve due to the biharmonic signal. We characterize the periodic and chaotic orbits,
hysteresis and VR phenomena using bifurcation diagram, phase portrait and response
amplitude

1 Introduction

The phenomenon of Vibrational Resonance (VR) in which the response of the
system to a weak periodic signal can be enhanced by the application of the
high-frequency periodic perturbation of appropriate amplitude. The analysis
of VR has received a considerable interest in recent years after the seminal
paper by Landa and McClintock [1]. The occurrence of VR has been studied
in monostable [2], bistable [1,3–5], multi-stable [6–8], time-delayed systems
[9–11], ground water-dependent eco system [12], coupled systems [13,14], two-
level quantum system [15], nano-electromechanical resonator [16] and discrete
dynamical systems [17,18]. Experimental evidence of VR in a bistable cavity
surface emitting laser system [8,19,20] and in a electronic circuit [21,22] has
also been studied.

So far, most of the previous work of VR has been studied in continuous-time
dynamical systems described by ordinary differential equations and less work in
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discrete dynamical systems. In this, we want to analyze the occurrence of VR
in certain two-dimensional discrete dynamical systems. In the present work, we
numerically investigate the occurrence of VR in two different two-dimensional
maps such as Burgers map and Predator-Prey model map. Usually the discrete-
time systems modelled by nonlinear difference equations are more beneficial and
reliable than continuous-time differential equations. It also provides efficient
computational results for numerical simulations and provides rich dynamics
such as stability, bifurcation and chaos phenomena as compared to continuous
one.

This paper deals with the study of the occurrence of VR of two different two-
dimensional maps such as Burgers map and Predator-Prey map. This paper is
organized as follows. In section 2, we present the difference equations and their
equilibrium points of two maps. In section 3, we numerically investigate the
occurrence of VR in Burgers map and for Predator-Prey model map in section
4. Finally we summarize the results in section 5.

2 Difference Equations and Their Equilibrium Points of
the maps

In this section we present the difference equations and their equilibrium points
of Burgers map and Predator-Prey model map.

(i) Burgers Map:

The difference equations of Burgers map is given by

xn+1 = (1− ν)xn − y2n = f(xn, yn) , (1)

yn+1 = (1 + µ)yn + xnyn = g(xn, yn) , (2)

where ν and µ are the parameters. This pair of coupled difference equations
used by Burgers [23] to illustrate the relevance of the concept of bifurcations to
the study of hydrodynamical flows. Recently, ELabbasy et al. [24] studied the
bifurcation analysis, chaos and control in the Burgers mapping and Senkerik
et al. [25] analyzed the evolutionary control of chaotic Burgers Map by means
of chaos enhanced differential evolution. The map has three fixed points such
as (i)E0 = (x∗, y∗) = (0, 0), (ii)E1 = (x∗, y∗) = (−µ,√µν) and (iii)E2 =
(x∗, y∗) = (−µ,−√µν)). Where E1 and E2 are symmetric fixed points. The
stability determining eigenvalues are obtained from the following determinant,

det(M − λI) =

∣∣∣∣ 1− ν − λ −2y∗

y∗ 1 + y∗ + x∗ − λ

∣∣∣∣ = 0. (3)

After solving this determinant, we get the eigenvalues λ±. An equilibrium
point is stable if λ± < 0 otherwise unstable. The stability analysis of these
three equilibrium points is studied in ref.[24].

(ii) Predator-Prey Model Map
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Predator-Prey model map represented by the following system of difference
equations [26,27]

xn+1 = axn(1− xn)− xnyn = f(xn, yn) , (4)

yn+1 = bxnyn = g(xn, yn). (5)

This model is used to understand the mechanism of competition between
population of two species. Where x denotes the number of prey and y denotes
the number of predator and a, b are the positive constant parameters, (a, b >
0). Khan et al. [26] studied the local dynamics and bifurcations of a two
dimensional discrete-time predator-prey model. The Predator-Prey model map
possesses three equilibrium points for a particular value of a and b, namely,
(i)E0 = (x∗, y∗) = (0, 0) for all parametric values of a and b, (ii)E1 = (x∗, y∗) =
((a − 1)/a, 0) for a > 1 and (iii)E2 = (x∗, y∗) = (1/b, (ab − a − b)/b) if a >
b/(b − 1) and b > 1. The stability determining eigenvalues are obtained from
the following determinant,

det(M − λI) =

∣∣∣∣a(1− 2x∗)− y∗ − λ −x∗
by∗ bx∗ − λ

∣∣∣∣ = 0. (6)

After solving this determinant, we get the eigenvalues λ±. An equilibrium
point is stable if λ± < 0 otherwise unstable. The stability analysis of these three
equilibrium points is studied in ref.[26]. Motivated by the above considerations,
we wish to analyze the occurrence of VR and hysteresis phenomena in two maps.
For this we need to drive them by the following biharmonic signal

F (n) = f cosωn+ g cosΩn, Ω >> ω (7)

where F (n) is added to the right hand side of Eqs.1 and 4. f cosωn and
g cosΩn are the low- and high-frequency signals with the amplitudes f and g
and ω and Ω are the frequencies of the low- and high- frequency signals.

3 Vibrational Resonance and Hysteresis in the Burgers
Map

The difference equations of Burgers map with biharmonic signal is given by

xn+1 = (1− ν)xn − y2n + F (n) , (8)

yn+1 = (1 + µ)yn + xnyn , (9)

where subscript n represents iteration steps corresponding to the discrete-time
evolution of the map. First, we analyze the occurrence of VR in the Burgers
map (Eqs.(8-9)) for a particular parameters values of µ and ν. We fix a =
0.15, b = 0.15 and ω = 0.1 and treat the amplitude g as the control parameter.
We iterate the map with an initial value x0 and leave the first 104 iterations
as a transient. The solution of the map essentially contains a slow motion
with the frequency ω and a fast motion with the frequency Ω. The amplitude
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Fig. 1. Response amplitude Q versus g for three values of Ω, namely, Ω = 1, 3, 5.
The other parameters values are ν = 0.5, µ = 0.1, ω = 0.1 and f = 0.1.

at the frequency ω increases and then decreases as g is varied, which is an
indication of the occurrence of VR: the low-frequency ω is enhanced by the
high-frequency signal. To quantify the occurrence of VR, we use the response
amplitude Q of the Burgers map (Eqs.(8-9)) at the signal frequency ω. We
focus our analysis on the low-frequency component of the output signal which
exhibits resonance. From the numerical solution of xn, the response amplitude
Q is computed through Q =

√
Q2
s +Q2

c/f , at the signal frequency, where

Qs =
2

NT

NT∑
n=1

xn sinωn, (10)

Qc =
2

NT

NT∑
n=1

xn cosωn, (11)

where T = 2π/ω and N is very large. In our numerical calculation of Q, N is
chosen as 103. We analyze the response amplitude Q using the Eqs.(10-11) with
ν = 0.5 and µ = 0.1 in the Burger’s map for different values of low-frequency
amplitude f and frequency (Ω) of the high-frequency signal. When g is var-
ied, the response amplitude (Ω) increases to a maximum and then decreases
resulting in the formation of peak and hence this phenomenon is termed as
vibrational resonance (VR). In Figure 1, Q(ω) is plotted for different values
of Ω, namely, Ω = 1.0, 3.0 and 5.0 with ω = 0.1 and f = 0.1. For all values
of Ω, single resonance is observed with the same response amplitude Q but
the position of the peaks are shifted towards higher values of g with increasing
Ω values. For Ω = 1.0, 3.0 and 5.0 the maximum response amplitudes Q are
observed at g = 0.453, 0.5 and 0.75 which is clearly shown in Figure 1. The
non-resonant region is found to decrease with increase in Ω which is clearly
evident in Figure 1.

Similarly we analyze the resonance pattern for ν = 0.5, µ = 0.1, ω =
0.1, Ω = 1.0 for three values of f , namely, f = 0.05, 0.1, 0.15 which is presented
in Figure 2. For all values of f , single resonance is observed with the same
response amplitude Q but the position of the maximum response amplitudes
Qmax are shifted towards the lower values of g. That is, for f = 0.05, 0.1, 0.15,
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Fig. 2. Response amplitude Q versus g for three values of f , namely, f =
0.05, 0.1, 0.15 with ν = 0.5 and µ = 0.1. The other parameters values are ω = 0.1
and Ω = 1.0.

the maximum of the response amplitudes Qmax occur at g = 0.255, 0.453, 0.5
which is clearly evident in Figure 2. The non-resonant region is found to in-
crease with increase in f which is clearly evident in Figure 2.

We describe the response curve in Figure 1. Figure 3 illustrates the nature
of xn for four values of g while ν = 0.5, µ = 0.1, ω = 0.1, Ω = 1.0 and f = 0.1.
For g = 0.0 (that is, the map is driven by low-frequency signal f cosωn only)
in Figure 3(a), a rapid switching between the equilibrium points occur. When
the high-frequency signal g cosΩn is switched on, the oscillatory solutions of
the map occur which is shown in Figures 3(b),3(c) and 3(d). However, as g
increases, the modulation of xn by the high-frequency signal g cosΩn and the
shape of the trajectory profile changes from a sinusoidal to amplitude mod-
ulated sinusoidal pattern. This is clearly seen in Figure 3(b-d). The time
duration between two consecutive returns to the neighbourhood of the fixed
point is ≈ T (= 2π/ω). The time duration decreases with a further increase in
g.

The unperturbed Burgers map (f = 0, g = 0) exhibits complex dynamics,
bifurcations like flip, pitchfork and Neimark-Sacker bifurcations and chaos for
certain range of µ values with the fixed values of ν, which is presented in Fig-
ure 4. The bifurcation scenario of the Burgers map without biharmonic signal,
when we vary the parameter µ with ν = 0.5, 1.0 and 2.0 is shown in Figure 4.
In Figures 4(a-c), it can be observed that there are more large invariant closed
curves with a great abundance of periodic windows, which are from a Hopf bi-
furcation at µ = 0.4925 and from regions of invariant closed curves to transient
chaos along with complex periodic windows and chaos. For clarity, local ampli-
fications of Figure 4(b) is shown in Figure 4(d). From this figure, we can clearly
noticed the symmetry breaking of periodic orbits, interlocking period-doubling
bifurcations and many complex windows in the chaotic regions. We have shown
the occurrence of flip bifurcation in Figure 4(c). The phase portraits for various
values of µ and ν in Figure 4(a) and Figure 4(b) are shown in Figure 5. From
this diagram, one can clearly see that the interleaving occurrence of invariant
closed curves and periodic orbits, Neimark-Sacker bifurcations and chaotic sets.
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Fig. 3. Trajectory plot of xn versus n for four values of g with ν = 0.5 and µ = 0.1.
The other parameters values are ω = 0.1, Ω = 1.0 and f = 0.1.

Fig. 4. Bifurcation diagram of the unperturbed Burgers map with (a) ν = 0.5, (b)
ν = 1.0 and (c) ν = 2.0. (d) Magnification of a part of Figure 4(b)

A large class of nonlinear dynamical systems is characterized by the coex-
istence of multiple attractors. It gives rise to the possibility of hysteresis, that
is, the possibility of jumps through the coexisting attractors in a way that is
not reversible when we fix a parameter back to its original value. Hysteresis
is a typical phenomenon and is encountered in many scientific fields includ-
ing magnetism, super conductivity and population dynamics. It exhibits both
in discrete-time and continuous-time dynamical systems. Bifurcation diagram
plotted by varying g in the forward direction as well as in the reverse direc-
tion is shown in Figure 6. Hysteresis behaviour is observed when g is varied.
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Fig. 5. Phase portraits of unperturbed Burgers map for some values of µ with ν = 1.0
.

Figure 6(a) is obtained by varying the amplitude g from a small value in the
forward direction. Figure 6(b) is obtained by varying g in the reverse direction
from the value 1. Different paths are followed in the parameter g is varied
smoothly from a small value to a larger and then back to a small value.

Fig. 6. Bifurcation diagrams (a) g is varied in the forward direction from 0. (b)
g is varied in the reverse direction from 1.0. The parameters values are fixed as
µ = 0.5, ν = 0.5, f = 0.1, ω = 0.1 and Ω = 5.0
.

4 Vibrational Resonance and Hysteresis in the
Predator-Prey Map

In the previous section, we studied the occurrence of VR and hysteresis in
the Burgers map. In this section, we analyze the occurrence of VR and hys-
teresis phenomena in the Predator-Prey map. The difference equations of the
Predator-Prey map driven by biharmonic signal is given by

xn+1 = axn(1− xn)− xnyn + F (n) , (12)

yn+1 = bxnyn. (13)

where n represents iteration steps corresponding to the discrete-time evolution
of the map. Hysteresis and jump behaviours are not observed in this map.
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Fig. 7. Response amplitude Q versus g for the frequency ratio Ω
ω

= 10 with a =
0.15, b = 0.15, ω = 0.1 and f = 0.1, 1.0
.

We numerically analyze the occurrence of VR for the parameters values of
a and b and treat the amplitude g of the high-frequency signal as the control
parameter. We analyze the effect of biharmonic signal for three frequency
ratios, namely, Ω

ω = 10 (that is ω = 1.0 and Ω = 10), Ω
ω = 50 (that is ω = 1.0

and Ω = 50) and Ω
ω = 60 (that is ω = 1.0 and Ω = 60). For these three

frequency ratios, the evolution of the response amplitude Q versus the high-
frequency signal amplitude g are shown in Figure 7 and Figure 8 for a = 0.15
and b = 0.15. In Figure 7, for the frequency ratio Ω

ω = 10, Q increases with
g but no resonance occurs for f = 0.1 and f = 1.0 which is clearly shown in
Figure 7.

Fig. 8. Response amplitude Q versus g for the frequency ratios (a) Ω
ω

= 50 and (b)
Ω
ω

= 60 with a = 0.15, b = 0.15, ω = 0.1 and f = 0.1, 0, 2, 0.3
.

Next we study the occurrence of VR for the frequency ratios Ω
ω = 50 and

Ω
ω = 60. The corresponding numerical results are shown in Figure 8(a) and
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Fig. 9. Bifurcation diagram of the unperturbed predator-prey map with b = 1.0 (b)
Magnification of a part of Figure 9(a)

Figure 8(b). Figure 8(a) shows the variation of numerically computed Q against
the control parameter g for the frequency ratio Ω

ω = 50. with a = 0.15, b = 0.15
and f = 0.1, 0.2, 0.3. For all values of f , single resonance is observed which
is clearly shown in Figure 8(a). The first striking effect is that the maximum
of the resonance curve diminishes as f increases and at the same time, its
location shifted towards lower values of the high-frequency signal amplitude
g. No resonance is observed when g < 1.65 and g > 1.8 for all values of f .
Then we analyze the occurrence of VR for another frequency ratio Ω

ω = 60
which is presented in Figure 8(b). For this frequency ratio we observed a single
resonance for all values of f and the position of the peak shifted towards lower
values of the high-frequency signal amplitude g.

The unperturbed Predator-prey model (f = 0, g = 0) exhibits new and
interesting dynamical behaviours such as Neimark-Sacker and period-doubling
bifurcations, a stable invariant closed curve and chaos for certain range of a
values with the fixed value of b. For example, the bifurcation pattern for the
predator-prey map described by the Eqs.(4-5) is shown in Figure 9(a). The
local dynamics of the map is clearly seen in Figure 9(b) which is the magnifi-
cation of a part of Figure 9(a). At the critical value of the control parameter
a, the stability of equilibrium points is exchanged or transformed. This type of
bifurcation is called transcritical bifurcation. At a = ac = 1.2, a transcritical
bifurcation occurs at which maximal Lyapunov exponent (λ ≈ 0). When a is
further increased from a = 1.2, the system undergoes both a Neimark-Sacker
bifurcation and a period-doubling bifurcation. Onset of chaos is observed at
a = 3.6. For 3.6 < a < 4.0, a chaotic motion is found. It shows that periodic
motion and chaotic motion for the range a ∈ [1.2, 4.0]. When the parameter
a is increased beyond the onset of chaos, the dynamics of the system is not
fully chaotic alone but many changes in the dynamics takes place at differ-
ent critical values of a. Particularly, the chaotic orbits interspersed by peri-
odic windows, intermittent chaos, period-doubling bifurcation and bifurcations
of chaos which include band-merging, sudden-widening, sudden destruction
crises, which are clearly evident in Figure 9(b). Due to the effect of biharmonic
signal perturbation, hysteresis phenomenon is not observed in the predator-
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Fig. 10. Bifurcation diagram of the perturbed predator-prey map with a = 3.5 and
b = 1.0 (b) Magnification of a part of Figure 10(a) The parameters values are fixed
as ω = 0.1, Ω = 5.0 and f = 0.1
.

prey model (Eqs.(12-13)). But the coexistence of several attractors, reverse
period-doubling bifurcation, periodic windows and chaotic orbits are observed
when the control parameter g is varied. The bifurcation pattern for the sys-
tem described by Eqs.(12-13) is shown in Figure 10(a) and Figure 10(b) gives
the magnification of a part of Figure 10(a). The local dynamics of the map
(Eqs.(12-13)) is clearly seen in Figure 10(b). We fix the other parameters val-
ues as a = 3.5, b = 1.0, f = 0.1, ω = 0.1 and Ω = 5.0. From Figure 10(a), it is
clearly depicted that with the inclusion of biharmonic signals the map (Eqs.(12-
13)) follows reverse period-doubling route to chaos instead of period-doubling
route to chaos. More importantly, these period-doubling reversals may be used
to control chaos, as they have the potential to suppress dangerous chaotic fluc-
tuations. The period doubling reversals phenomenon occurs in models of insect
population [28,29], annual plant populations [30], host-parasitoid interactions
[31] and systems of competing species [32]. The presence of reversals has also
been documented in other areas of research, ranging from models of magne-
toconvection [33] and rotating galaxies [34], to a neuronal model of psychotic
human behaviour [35].

5 Conclusion

In the present work, we numerically studied the occurrence of vibrational reso-
nance in two particular two-dimensional maps like Burgers map and Predator-
Prey map under the influence of biharmonic signal. Here we have shown that
the low- frequency signal greatly enhanced by the high-frequency signal in a
resonant way. From the numerical analysis, we observed single resonance peak
for a specific set of values of the parameters of the maps such as amplitude g
and frequency Ω of the high-frequency signal. Apart from the VR phenomenon,
hysteresis behaviour is encountered in Burgers map. We have observed variety
of complex behaviours such as reversal of period-doubling bifurcations, peri-
odic and chaotic sets for a certain range of parameters values of the maps. We
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further verified our findings with the help of bifurcation diagram, phase por-
trait and response amplitude Q. Investigation of other types of resonances such
as stochastic resonance, parametric resonance, ghost-vibrational resonance and
coherence resonance in these maps may provide interesting results. These will
be studied in future.
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