
Chaotic Modeling and Simulation (CMSIM)  3: 377-388, 2018 
 

_________________ 

Received: 29 September 2017 / Accepted:  21 March 2018 

© 2018 CMSIM                                                                                ISSN 2241-0503 
 

Chaos in the transient current through As2Te3(In) 

and Mackey-Glass Simulation of Hysteresis Effect on 

glass substrates 
 

A. C. Keles
1,2

, A. S. Hacinliyan
1,2

 and Y. Skarlatos
3
 

 

1
  Department of Information Systems and Technologies, Yeditepe University, Kayisdagi, 

Turkey 
2

      Department of Physics, Yeditepe University, Kayisdagi, Istanbul, Turkey 
3

    Department of Physics, Bogazici University, Bebek, Istanbul, Turkey 

 

E-mail: alicihan.keles@hotmail.com 

 

Abstract. As2Te3(In) is a glass substrate (chalcogenide) that can be used in electronic 

devices in engineering such as computer memory arrays, display devices, optical mass 

memories because of its sensitivity to current transition. These glass substrates show 

chaotic behavior. In this study, we observed that by calculating the maximal Lyapunov 

exponents with non-linear time series analysis techniques. For this technique, at first 

linear auto-correlation function is used to show the delay time value in long- range 

correlation. However, the mutual information technique gives more reliable delay time 
value in short-range correlation. Estimated delay time values provide appropriate 

embedding dimensions by the false-nearest neighbors method. Attractor reconstruction is 

used for showing chaotic behavior, Hurst and Detrended Fluctuation Analysis (DFA) are 

used to support chaoticity. Hurst analysis describe the motion of transient current in time 
evolution. Calculated values of DFA give us long range power of correlation exponents. 

We observe slow transient effects causing hysteresis in the current-voltage 

characterization. We find that the current-voltage (IV) measurement delay time. 

Furthermore, As2Te3(In) shows hysteresis effect. A delay differential equation such as 
Mackey-Glass which has both periodic and aperiodic solutions can be a useful simulation 

tool for I-V characterization of glass substrate, which indicated chaos or non-periodicity 

in time series, is claimed to constitute a suitable model. 
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1  Introduction 
 

The samples under investigation were set up as sandwiched metal-glass-metal 

structures with the glass as the isolating layer. 300 nm thick indium electrodes 

were thermally evaporated at 10
-6

 mbar on microscope glass slides cleaned in a 

solution. Afterwards, indium contacts were evaporated. The I-V measurements 

were performed by a programmable picoammeter/voltage source (Keithley, 

model 487) and a temperature controller (Lake Shore, model 300). The 
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picoammeter and the temperature controller were interfaced to a PC through an 

interface card that automated data taking. The setup is schematically introduced 

in Fig. 1. The picoammeter model 478 utilized is equipped for reading currents 

in the range 10 fA to 2 mA. It additionally fills in as a DC voltage supply in the 

range up to 500V. 

 
Fig. 1. Schematic of the experimental setup 

 

The data of transient current against time (data points * 0.37s) at constant 

voltage of 2 V for As2Te3(In) is presented as different sets with noise and 

without noise in Fig. 2. The noise was reduced from the raw data applying noise 

reduction tool on the TISEAN software package published by R. Hegger et al. [1] 

and Kantz and T. Schreiber [2]. The transient current in As2Te3(In) glass films for 

times in the range of twelve thousand seconds has been analyzed. Several sets of 

data on different samples were taken at intervals of 0.37 s under 2 V at 23°C as 

room temperature (296 K).  

 

 
Fig. 2. The current change in As2Te3(In) under a constant applied voltage of 2V. 

 

The data was originally taken to find a steady state value for the current in an 

experiment prepared to study mechanisms of conductivity in As2Te3(In) thin 

film samples. The current was expected to settle down to a steady state value in 

a couple of hours. On the other hand, during this process, it was observed that 

the current against time (data points * 0.37s) plot shows a transient behavior 

characteristic of chaotic dynamical systems. At the point when an electric field 
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is connected to the thin films, the characteristic electron traps in films because 

of defects and impurities can offer ascent to the accompanying impacts: 

formation of new traps and annihilation of traps arising from the applied DC 

electric field. Subsequently, the electric field may be considered as an operator 

that may force the system, to damp and cause both impacts. However, the data 

looks more like the behavior of the transient current data for polymer thin films 

such as PMMA observed by A. Hacınlıyan et al. [3]. A characteristic of 

nonlinear systems related to chaos is forced damped motion. Another indicator 

of chaos was observed as non-periodicity in the signal. These characteristics 

steer us into analyze the transient current data using tools of nonlinear time 

series analysis methods. 

 

In section 2 contains details of the analysis that has been performed and 

observations that have presented that the data show two different time scales 

and chaotic behavior have been seen in the transient data. In section 3 contains 

the Hurst (R/S) Analysis of As2Te3(In) and results to obtain the motion of the 

current mechanism. In section 4 includes Detrended Fluctuation Analysis results 

of data sets. Section 5 includes simulation of Mackey-Glass equation for data 

sets which have hysteresis. In section 6 contains a brief discussion. 

 

2  Chaoticity of the transient current in As2Te3(In) 
 

Time series analysis is used for analyzing the data of As2Te3(In) using TISEAN 

[1,2] software package.  The formulas as part of the standard literature are used 

and applied. The reconstruction of the phase space from the scalar transient 

current s(k), where k means the kth time step, requires that we form vectors 
 ⃗    given by 

                    ⃗                             ]             ⃗               (1) 

 

where   denotes the delay time and   denotes the embedding dimension. The 

scalar values      are taken with respect to a sampling time, and the delay   

must be taken a multiple of it. If the time delay is too short the coordinates      
and        will not be sufficiently independent, hence the tangent jet cannot 

be sufficiently distinguishable. If the time delay is too large the correlation 

between      and        will be lost.  The meaningful time delay τ and the 

meaningful embedding dimension is found in order to construct time delay 

vectors and determine the number of parameters that correspond to the 

dimensionality of the system. The delay time is found by using Mutual 

Information (MUT) or correlation function (CORR). After determining the 

delay times, the embedding dimension is found by using the False Nearest 

Neighbors (FNN) method with using this appropriate values. The linear 

autocorrelation function determining the first zero for the determination of the 

time delay determined by Abarbanel [4] is given by 
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   . The autocorrelation functions, which are the Fourier 

transform of the power spectrum -       versus  , have first zeros at times of 

with respectively 5260 s (14197 time steps*0.37s) for the data set without noise 

and 5330 s (14351 time steps*0.37s) for the data set with noise. 

 

Another method for the determination of the delay time is to find the first 

minimum of the average mutual information as a nonlinear correlation function 

given by Fraser and Swinney [5] 

 

                              ∑  (           )     [
             

 (      )      
]     
        (3) 

 

 (           ) is the joint probability at a time   measured      later at a 

time     measured       .         is the probability of measured      [2, 

4]. The first minimum values are respectively at 20 s for the data set without 

noise and 35 s for the data set with noise. According this mutual information, 

the time delay has been chosen as the value of 20 s (54 time steps*0.37s - 

without noise) and 35 s (93 time steps*0.37s - with noise). These values are 

more reliable estimations including nonlinear effects than linear autocorrelation 

time delay values. When the mutual information and the linear autocorrelation 

function are compared, two different time scales are observed: the signals 

forgets its state in between 20 s and 35 s when nonlinearity is considered, but 

they seem to be linearly correlated for up to 5260 s and 5330 s. This manner 

implies that there may be two different time mechanisms which go to two 

timing scales. The second step in phase space reconstruction is choosing the 

embedding dimension by the method of false nearest neighbors [4]. The fraction 

of false neighbors is presented against the embedding dimensions for different 

delay times respectively 20 s – 35 s (time delays for mutual information) 5260 s 

– 5330 s (time delays for autocorrelation function). The ratio of false neighbors 

drops drastically after embedding dimension four for a delay time of 20 s and 35 

s; hence an embedding dimension of four is a good estimate for the minimal 

embedding dimension.  

 

From minimum to larger values of embedding dimension is represented by 

scaling considerations in the Lyapunov exponent calculation. For detecting the 

presence of chaotic behavior in the transient data, the maximal Lyapunov 

exponent is calculated by 
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 ⃗  

 is the embedding vector as a reference point. All neighbors are selected with 

distance smaller than the   value (denoted as     ⃗  ) and are averaged over the 

distances of them to the reference point at time   . The distances go as     , 

where   is the maximal Lyapunov exponent. If       shows a linear robust 

increase for    then the slope is taken as maximal Lyapunov exponent 

described detailly by Kantz [6]. The slope values of the persistent linear 

increases give the Lyapunov exponent values. Table 1 and Table 2 shows 

respectively these Lyapunov exponent values for different embedding 

dimensions. 

 

m=2 m=3 m=4 m=5 

0.0095 0.0105 0.0113 0.0119 

Table 1. Lyapunov exponent values for different embedding dimensions of data 

set with noise 

 

m=2 m=3 m=4 m=5 

0.0102 0.0112 0.0120 0.0125 

Table 2. Lyapunov exponent values for different embedding dimensions of data 

set without noise 

 

From Table 1 and Table 2 values, the average values of 0.0108 ± 0.0004     for 

data set have noise and 0.0115 ± 0.0004     for data set have not noise are 

estimated for the maximal Lyapunov exponent. These positive values getting 

from the slopes indicating the time evolution of the transient current has chaotic 

behavior.  

 

3  Hurst (R/S) Analysis of As2Te3(In) 

 
The Hurst exponent is obtained utilizing the standard approach and it is a 

numerical approach to deal with the consistency of a period arrangement in a 

time series. If the Hurst exponent (H) is near 0.5, the process is a random walk 

well known as Brownian motion. A Hurst example (H) in the range 0 < H < 0.5 

suggests non-random behavior in a time series. A Hurst exponent (H) in the 

range 0.5 < H < 1 suggests a time series with long range, persistent 

advancement. In Fig. 3, the fitting functions are applied to the Hurst Analysis to 

get Hurst exponents. The data sets have three regimes as seen from graphs. 

Table 3 gives the results of these regimes to interpret the behavior mechanism of 

transient current in time evolution. 
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Fig. 3. Fitting graphs for evaluating the Hurst exponent values 

 

 Hurst exponents for 

data set with noise 

Hurst exponents for 

data set without noise 

First regime 0.2805 0.3016 

Second regime 0.0924 0.0840 

Third regime 0.3408 0.3364 

Table 3. Hurst exponents of the fitting graphs 

 

4  Detrended Fluctuation Analysis (DFA) of As2Te3(In) 

 
Detrended Fluctuation Analysis is used on the data sets to sustain the indication 

of changing regimes. Detrended Fluctuation Analysis (DFA) is a scaling 

analysis technique used to determine long range power law correlation 

exponents expressed by C. K. Peng et al. [7, 8]. It is obtained by integrating the 

time series of length N, then dividing the outcome into boxes of equivalent 

length, n. A least squares line is fit to the data in each box of length n. The y 

coordinate of the straight-line sections is signified by      . Next, these 

integrated time series, y(k), is detrended by subtracting the local pattern,      , 

in each box. The root-mean-square fluctuation of this integrated and detrended 

time series is determined by 

                                           √
 

 
∑            ]  

                                   (5) 
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This calculation is rehearsed over all time scales (box sizes) to describe the 

relation between     , the average fluctuation, as a routine of box size,  . A 

straight relation on a log-log plot demonstrates the nearness of power law 

scaling. Under such conditions, the fluctuations can be identified by a scaling 

exponent,  , with that         . A crossover in the scaling exponent,  , shows 

a transition from one kind to a different kind of basic relationship, because of a 

transition in the dynamic properties described by K. Hu et al. [9] and Z. Chen et 

al. [10]. In Fig. 4, the fitting functions are applied to the DFA. The data sets 

have two regimes as seen from graphs. Table 4 gives the results of these regimes 

to interpret the long-range power law correlation exponents. 

 

 
Fig. 4. Fitting graphs for evaluating the correlation exponent values 

 Correlation 

exponents for data 

set with noise 

Correlation 

exponents for data 

set without noise 

First regime 1.4526 1.5890 

Second regime 0.8142 0.8101 

Table 4. Correlation exponents of the fitting graphs 

 

5  Hysteresis Effect of As2Te3(In) and Simulation of Mackey-

Glass equation 

 
The data sets which have hysteresis shown in Fig 5.  have been obtained as the 

current values versus the changing voltage (0 V – 4 V) values in constant 

interval of ∆V at varying time steps of  ∆t. Respectively, the program  has been 

arranged as forward bias from 0 V to 4 V and backward bias from 4 V and 0 V. 

So, the hysteresis and memory effect on semiconductor glass substrates 
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(chalcogenides) of As2Te3(In) has been broadly examined. The Mackey-Glass 

equation has applied to our empirical data set of As2Te3(In) glass substrate. The 

artificial data set is simulated to determine the chaotic mechanism of the 

empirical data set with using a tool of MATLAB named as NAR (nonlinear 

autoregressive) Neural Network Analysis applied by P. Potocnik [13]. The 

Mackey-Glass equation is the nonlinear time delay differential equation 

 
  

  
   

  

    
         where                                 (6) 

where         are real numbers and    represents the value of the variable x at 

time       [14]. Depending on the values of the parameters, this equation 

displays a range of periodic and chaotic dynamics. Fig. 7 shows us the dynamics 

in the Mackey-Glass equation which based on the parameters for γ = 0.53, β = 

1.02, τ = 30, n = 7. 

 
Fig. 5. Data set which has hysteresis (I versus V at varying time) 

 

Fig. 6. Dynamics in a piece of empirical data set of  As2Te3(In) (500 samples 

arbitrarily chosen from entire data set) 
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Fig. 7. Dynamics in simulation of  Mackey-Glass equation, for γ = 0.53, β = 

1.02, τ = 30, n = 7 

The relation between the validation data and training data sets which has nearly 

close prediction depends on the error. In these graphs, the simulations have 

taken first 300 numbers of samples from a piece of the empirical data set to 

recognize the initial dynamics of the transient current mechanism. After this 

process, the simulations have iterated the last 200 numbers of samples to 

validate artificial data. When the numerical difference between sampling data 

and predicted data has been calculated, the error has been determined. Fig. 8 

shows how dynamics of dataset have changed.  

 

Fig. 8. Dynamical graph of the simulation  

In Fig. 8, simulated data had best validation performance when the number of 

iterations has increased. Meaningfully, more accurate results have been obtained 

when simulation codes have been mostly iterated. Furthermore in Table 5 and 6, 

the maximal Lyapunov exponents for validation and prediction values of the 

simulation have been calculated. So, they could be compared for the simulated 

dataset and empirical dataset. 
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m=2 m=3 m=4 m=5 

0.0133 0.0159 0.0160 0.0178 

Table 5. Lyapunov exponent values for different embedding dimensions of data 

set for validation 

m=2 m=3 m=4 m=5 

0.0117 0.0181 0.0194 0.0191 

Table 6. Lyapunov exponent values for different embedding dimensions of data 

set for prediction 

 

 

6  Conclusions 

 

The transient current in As2Te3(In) shows chaotic behavior with a positive 

Lyapunov exponents as 0.0108 ± 0.0004     for data set with noise unfiltered 

and 0.0115 ± 0.0004     for data set without noise, and an embedding 

dimension of four. The Lyapunov exponent values for different embedding 

dimensions are very close to each other, so it can be said that the data which has 

noise and is purified from noise point to analogous transient current mechanism 

at this environmental condition. Both the false nearest neighbors method and 

application of maximal exponent were used as different approaches to gain 

reliable value of the embedding dimension. The complex identity of glass 

substrates implies many degrees of freedom and a multifractal structure. So, 

obtaining identical results under same conditions will not be so easy. There are 

additional important studies about using of nonlinear methods to analyze the 

conduction mechanism in different amorphous structures which have irregular 

behavior. [3,11,12,15] The first zero of the linear autocorrelation function and 

the first minimum of the mutual information function give different time scales. 

There are local minima values in the mutual information function, but these 

values have same order of magnitude under the first zero of the autocorrelation 

function. Consequently, this indicates two different time scales in the 

conduction mechanism of glass substrates. When the electric field is applied, the 

system is forced because of created new traps. Also, it behaves a dissipative 

agent by annihilating them. Many conflicting manners exhibit two significances, 

so these significances may cause a bifurcation effect and may be have two 

different time scales. If both occur in a complex structure of a glass substrate, 

the chaotic time evolution of the current appears. Accordingly, the Hurst 

Analysis shows that the data sets have three regimes and three different Hurst 

exponent values. All of them are less than the critical value of 0.5 for Hurst 

Analysis. This implies that there is non-random behavior mechanism of 
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transient current of time evolution for the data sets. Only second regime has 

smaller value than others. It can be considered, there is a transition that the 

fluctuations of the current through glass substrate saturate between this gap 

belongs to the second regime. After that, the conduction mechanism of the 

sample recognizes the condition and it properly behaves related to its memory. 

On the other hand, two different regimes observed on Detrended Fluctuation 

Analysis. The values of the slopes are 1.4526 and 0.8142 for the data with noise, 

and 1.5890 and 0.8101 for the data without noise. The observed slope points 

indicate a change in correlation properties that sustain the change in the 

dynamics of the system observed during the above investigation of maximal 

Lyapunov exponents. Definitely, distinction of the slopes of the data without 

noise is more than the distinction observed in the data with noise. The range of 

maximal Lyapunov exponents for the data without noise (0.0115 ± 0.0004    ) 

is greater than the maximal Lyapunov exponents for the data with noise (0.0108 

± 0.0004    ). So, the change observed in the maximal Lyapunov exponents of 

two types of data sets is additionally identified by DFA. The fact that the 

rescaled range analysis gives a steeper slope followed by a less steep slope is 

compatible with the DFA results. The fact that the rescaled range analysis 

reverts to the higher slope is probably an artifact of its sensitivity to extreme 

values. By applying the simulation of the Mackey-Glass equation with using 

computational environment, artificial data has been compared with empirical 

data. As final concept, the physical behavior of the samples has been definitely 

explained as a general phenomenon. The range of maximal Lyapunov exponents 

for prediction dataset (0.0171 ± 0.0007    ) is greater than the range of 

maximal Lyapunov exponents for validation dataset (0.0157 ± 0.0007    ). The 

maximal Lyapunov exponents of validation and prediction dataset have similar 

values with the maximal Lyapunov exponents of empirical dataset. This implies 

that the Mackey-Glass equation is a suitable simulation method to analyze and 

predict transient current mechanism and hysteresis of As2Te3(In) glass 

substrates.  
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