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Abstract. We study a discretization of the generalized multidimensional Boole type
transformations of Rn and their ergodical properties. The fixed points of the corre-
sponding finite-dimensional stochastic Frobenius-Perron operator discretization are
constructed, the structure of the related invariant measures is analyzed.
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1 Introduction: the Frobenius-Perron operator and its
discretization

We consider an m-dimensional, not necessary compact, C1-manifold Mm, en-
dowed with a Lebesgue measure µ, determined on the σ-algebra of Borel subsets
of Mm, and ϕ : Mm → Mm being an almost everywhere smooth mapping.
The related [1,10,15,16,7] Frobenius-Perron operator

Pϕ : L1,loc(M
n;R)→ L1.loc(M

n;R) (1)

is defined by means of the integral relationship∫
A

Pϕhdµ :=

∫
ϕ−1(A)

hdµ (2)

for any h ∈ L1,loc(M
n;R) and all µ-measurable subsets A ⊂Mm. Equivalently

it can be defined as a mapping on the measure space M(Mm)

Pϕ(ν)(A) := ν(ϕ−1(A)) (3)

for any measure ν ∈ M(Mm) and all µ-measurable subsets A ⊂ Mm. In
particular, if a measure ν ∈ M(Mm) is absolutely continuous with respect to
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the measure µ on Mm, then definitions (3) and (2) are equivalent. In the
infinitesimal form the Frobenius-Perron operator (1) action is representable as

Pϕh(x) =
∑

y(x)∈ϕ−1(x)

h(y(x))

∣∣∣∣dµ(y(x))

dµ(x)

∣∣∣∣ =
∑

y(x)∈ϕ−1(x)

h(y(x))

∣∣∣∣dµ(ϕ(y))

dµ(y)

∣∣∣∣−1

y=y(x)

(4)
for any h ∈ L1,loc(M

n;R) and x ∈Mm, where dµ(ϕ(y))/dµ(y) means the usual
Radon-Nikodym derivative [1,15] of the shifted measure µ · ϕ with respect to
the Lebesgue measure µ on Mm.

As we are mainly interested in studying the ergodic properties of the map-
ping ϕ : Mm →Mm by means of the finite dimensional tools, we now proceed
to a discretization approach [12,14,9] to the Frobenius-Perron operator (1) pre-
liminarily choosing a partition BN of the manifold Mm as N ∈ Z+ boxes (or
sells) Bi ⊂ Mm, i = 1, N, and introducing the space LN of the step-functions
on Mm with respect to the partition BN , which can be constructed using the
projection operator ΠN : L1,loc(M

n;R)→ LN ⊂ L1,loc(M
n;R) :

(ΠNh)(x) :=
χBi

(x)

µ(Bi)

∫
Bi

hdµ (5a)

for any h ∈ L1,loc(M
n;R) and all x ∈Mm. Then, by definition, one can define

the Frobenius-Perron operator discretization as

Pϕ,N := ΠNPϕ|LN . (6)

As a consequence of the definitions above one obtains that the discretized
Frobenius-Perron operator (6) can be represented with respect to the canonical
basis in the finite-dimensional space LN by means of the (N ×N)-matrix

Pϕ,N = {Pijϕ,N := µ(ϕ−1(Bi) ∩Bj)µ(Bj)
−1 : i, j = 1, N}, (7)

which is exactly a discretization of the infinitesimal expression (4). The matrix
component Pijϕ,N , i, j = 1, N, can be, obviously, interpreted as a transition
probability matrix for a point in Bj , being randomly chosen with respect to
the measure µ, to be mapped into the set Bi by the mapping ϕ : Mm →Mm.
Thus, the obtained stochastic matrix Pϕ,N : LN → LN defines naturally a
finite homogeneous Markov chain, and particularly a linear discrete dynamical
system in the Euclidean space EN ' LN .

The described approach to study the dynamical properties of the mapping
ϕ : Mm → Mm by means of the discretized Frobenius-Perron operator (6) is
widely used in the literature [13,11,12,6,8,9]. It was also effectively used S. Ulam
for finding the approximation of the invariant measures for the mapping ϕ :
Mm →Mm, which are related with nonnegative fixed points of the discretized
Frobenius-Perron operator (6). In addition, the discretized Frobenius-Perron
operator (6) appears to be very useful for analyzing the ergodicity and mix-
ing properties [9,7,14,10,15,16] of the mapping ϕ : Mm → Mm. Namely, the
ergodicity of it with respect to the partition BN is defined as the irreducibility
of the discretized Frobenius-Perron operator (6), and the mixing with respect
to the partition BN is defined as its primitivity and ergodicity.
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2 Discrete ergodicity analysis

As ergodicity of the mapping ϕ : Mm → Mm is deeply connected with the
suitably determined ergodic measure ν on Mm, which is a special invariant
measure on Mm, such that any ϕ-quasi-invariant function ϕ : Mm → Mm

is almost everywhere constant on Mm, we will be mainly interested below in
the invariant measure ν absolutely continuous with respect to the Lebesgue
measure µ on Mm, which is a fixed point of the Frobenius-Perron operator
(1), defined by the mapping (3). In what follows there is accepted the next [9]
definition of the discrete ergodicity.

Definition 1. A measurable mapping ϕ : Mm → Mm is called ergodic with
respect to the partition BN , if the following discrete ergodic theorem holds:

there exists a non-negative definite and normalized vectorH(0) ∈ EN , H(0) ≥
0, ||H(0)||1 = 1, such that

lim
n→∞

1

n

n−1∑
k=0

Pkϕ,NH = H(0) (8)

for any H ∈ EN , H ≥ 0, ||H||1 = 1.

It is naturally to assume that the discrete ergodicity with respect to the
partition BN can happen to be persisting for almost all possible partitions of
Mm and for arbitrary dimensions N ∈ Z+. In this case one can determine a

set of functions {h(0)
N : Mm → R+ : N ∈ Z+}, where

h
(0)
N (x) :=

N∑
j=1

H
(0)
j χBj

(x) (9)

for any x ∈ Mm, and next proceed to studying the existence of the pointwise
limiting function

h(0)(x) := lim
N→∞

h
(0)
N (x) (10)

defining the corresponding absolutely continuous with respect to the measure
µ on Mm and invariant with respect to the transformation ϕ : Mm → Mm

measure

ν(A) :=

∫
A

h(0)dµ (11)

for any measurable subset A ⊂ Mm. If the constructed measure (11) proves
to be finite, that is

∫
Mm h(0)dµ < ∞, then this invariant measure ν can be

easily made probabilistic.
Taking into account the fact that the Frobenius-Perron matrix (7) is

stochastic, one can recall the well known Frobenius-Perron theory [3] of non-
negative stochastic matrices, in particular the following useful proposition.

Proposition 1. The mapping ϕ : Mm →Mm is with respect to the partition
BN :
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ergodic iff the matrix Pϕ,N is irreducible, that is for every pair of states
(i, j) it is possible to move from i to j and back again; in other words Pϕ,N
is irreducible, if it is not block upper-triangular, up to reordering rows and
columns;

mixing iff the matrix Pϕ,N is primitive, that is all its eigenvalues not equal
to the unity have modulus less than unity;

ergodic, but not mixing, iff the matrix Pϕ,N is q-cycling with maximal
q > 0.

Moreover, it is worthy of mentioning that the irreducibility and primitivity
depend only on the structure of the directed graph Gϕ,N , naturally associated
with the matrix Pϕ,N . Concerning the effective studying of the sole ergodicity
of the mapping ϕ : Mm →Mm the following famous Frobenius-Perron theorem
proves strongly important.

Proposition 2. An irreducible stochastic matrix Pϕ,N is q-cyclic with q ∈ Z+

maximal iff one of the following equivalent conditions holds:

a) there are q different eigenvalues of the matrix Pϕ,N of modulus one;

b) there are q symmetrically distributed and algebraically simple eigenvalues
exp(2πik/q), k = 0, q − 1, of the matrix Pϕ,N ;

c) the whole spectrum of the matrix Pϕ,N is invariant under the rotation
about the angle 2π/q.

3 The classical Boole mapping and its ergodicity

The classical Boole transformation [5] ϕ : R → R is defined as the almost
everywhere smooth mapping

ϕ(x) := x− 1/x, (12)

defined for all x ∈ R\{0}. It was proved to be ergodic [2,1] with respect to the
standard invariant infinite Lebesgue measure on R. The corresponding fixed
point equation for the Frobenius-Perron operator action (4) can be easily
presented as

(Pϕh(0))(x) =
∑
±
h(0)(y±(x))y′±(x) = h(0)(x), (13)

where, by construction, ϕ(y±(x)) = x, y′±(x) > 0, and h(0)(x) ≥ 0 for almost

all x ∈ R. Having assumed that there exists an meromorphic continuation h(0) :
C→ C of the mapping h(0) : R→ R+, such that |h(0)(z)− k(0)| = O(1/|z2|)
for |z| → ∞ and some k(0) ≥ 0, the equality (13) can be rewritten as
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∑
±[h(0)(y±(x))− k(0)]y′±(x) =

= − limr→∞
1

2πi
d
dx

∑
±
∮
∂Cr

[ln(z − y±(x)] [h(0)(z)− k(0)]dz+

+ 1
2πi

d
dx

∑
{b=a,ā}

∮
∂Oε(b}

[ln
∏
±

(z − y±(x)] [h(0)(z)− k(0)]dz =

= − limr→∞
1

2πi

∮
∂Or(0}

[ ddx ln(z2 − zx− 1)][h(0)(z)− k(0)]dz+

(14)

+
∑
{a}

∮
∂Oε(a}

z[h(0)(z)−k(0)]dz
(z2−zx−1) +

∑
{ā}

∮
∂Oε(ā}

z[h(0)(z)−k(0)]dz
(z2−zx−1) =

= limr→∞
1

2πi

∮
∂Or(0)

z[h(0)(z)−k(0)]dz
(z2−zx−1) +

∑
{b=a,ā}

k
(0)
b (x−2z)

(z2−xz−1)2

∣∣∣∣
z=b

=

+ limr→∞
1

2πi

∮
∂O1/r(0)

[h(0)(1/s)−k(0)]ds
s(1−xs−s2) +

∑
{b=a,ā}

k
(0)
b (x−2z)

(z2−xz−1)2

∣∣∣∣
z=b

=

=
∑
{b=a,ā}

k
(0)
b (x−2z)

(z2−xz−1)2

∣∣∣∣
z=b

,

where Or(b) := {|z − b| < r, b ∈ C, r > 0} and k
(0)
ā = k̄

(0)
a , Rek

(0)
a ≥ 0, are

the corresponding residuum constants, related with the assumed finite second
order pole set {a, ā ∈ C\R} of the function h(0) : C→ C, satisfying some finite
system of algebraic constraints, ensuring the positivity of the reduced function
h(0) : R→ R. Based on simple enough yet cumbersome calculations one can
get convinced that this system of constraints is compatible iff the constants

k
(0)
b = 0 for all b ∈ {a, ā}. Then from (5a) one easily derives that

h(0)(x) = k(0)
∑
± y
′
±(x) = k(0)[ y+(x)

2y+(x)−x + y−(x)
2y−(x)−x ] =

= k(0) 4y+(x)y−(x)−x[y+(x)+y−(x)]
4y+(x)y−(x)+x2−2x[y+(x)+y−(x)] = k(0),

(15)

where we made use of the obvious identities y+(x)y−(x) = −1 and y+(x) +
y−(x) = x for all x ∈ R. Thus, the invariant infinitesimal measure with respect
to the Boole mapping (12) equals

dν(x) = k(0)dx, (16)

being absolutely continuous subject to the standard Lebesgue measure dx on
R. Thus, one can formulate the following theorem.

Theorem 1. Being unique, modulo the constant multiplier, the invariant with
respect to the Boole mapping (12) measure expression (16) is ergodic on axis
R.
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Having now constructed the uniformly discretized Frobenius-Perron opera-
tor matrix (7), one can check that the matrix Pϕ,N is reducible with respect

to any partition BN = ∪N+

j=−N−
[j/N, (j+1)/N ] ⊂ R for any its dimension N :=

(N− +N+)→∞. Then, based on Proposition 1, one can claim that the Boole
mapping (12) is ergodic with respect to any partition BN , N → ∞. One can
also verify that the positive definite vector H(0) = (1/N, 1/N, ..., 1/N) ∈ EN
solves the limiting condition (8), being its eigenvector for the unity eigenvalue:

Pϕ,NH(0) = H(0) (17)

for any dimension N → ∞. As a corollary of the claim above and the cycling
properties of the Frobenius-perron matrix Pϕ,N , one derives the next theorem,
generalizing the one proved in [2] by means of different mostly qualitive tools.

Theorem 2. The Boole transformation (12) is ergodic, yet not mixing.

As it can be checked by means of direct computations, the Boole transfor-
mation (12) is ergodic yet not mixing, as the matrix Pϕ,N is qN -cycling with
maximal qN > 0 for any dimension N →∞.

4 The generalized Boole type mapping and its ergodicity

In the present section, we will study the invariant measures and ergodicity
properties for the generalized Boole type transformations of plane R2 :

ϕ1(x1, x2) := (x1 − 1/x2, x2 + 1/x1), ϕ2(x1, x2) := (x1 + 1/x2, x2 − 1/x1),
(18)

where (x1, x2) ∈ R2\{(0, 0)}. The corresponding to the mapping ϕ1 : R2 → R2

local Frobenius-Perron operator Pϕ acts on a non-negative definite function
h(0) : R2 → R+ as

(Pϕh(0))(x1, x2) =
∑
±
h(0)(y1,±, y2,±)[1 + y−2

1,± y
−2
2,±], (19)

where, by definition, y1,± := y1,±(x1, x2), y2,± := y2,±(x1, x2), ϕ1(y1,±, y2,±) :=
(x1, x2), y2

1,± − x1y1,± + x1/x2 = 0, y2,± = y1,±x2/x1 for any (x1, x2) ∈
R2\{(0, 0)}. It is easy to check by means of direct and simple enough cal-
culations that a positive constant function h(0)(x1, x2) = k(0) ∈ R+ is an
eigenfunction of the mapping (19) with the unity eigenvalue:

Pϕk(0) = k(0). (20)

This, in particular, means that the infinitesimal measure dν(x1, x2)) := k(0)dx1dx2

on the plane R2 is invariant with respect to the mapping ϕ1 : R2 → R2. If to
state now that this invariant measure is unique on the plane R2, this will mean
[7,10,15,16] that the mapping ϕ1 : R2 → R2 is ergodic. To show this, we
will make use of the uniform discretization of the Frobenius-Perron operator
(19) and find by means of usual numerical calculations that the corresponding
N -dimensional Frobenius-Perron matrix Pϕ,N : EN → EN is irreducible for
any dimension N →∞. This fact, owing to Proposition 1, makes it possible to
formulate the following theorem.
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Theorem 3. The Boole type transformation ϕ1 : R2 → R2 of (18) is ergodic.

Concerning the mixing property of the mapping ϕ1 : R2 → R2 addi-
tional calculations still are needed to show, owing to Proposition 2, that the
N -dimensional Frobenius-Perron matrix Pϕ,N : EN → EN is qN -maximal
cycling for any dimension N →∞.

Remark 1. Taking into account that the mapping ϕ2 : R2 → R2 is simply
conjugated with the mapping ϕ1 : R2 → R2, all statements above concerning
its ergodicity also hold for the mapping ϕ2 : R2 → R2.

The Boole type mappings (18) can be generalized on the three-dimensional
space R3 :

ϕ1(x1, x2, x3) : = (x1 − 1/x2, x2 − 1/x3, x3 − 1/x1), (21)

ϕ2(x1, x2, x3) : = (x1 − 1/x3, x2 − 1/x1, x3 − 1/x2),

defined for any (x1,x2, x3) ∈ R3\{(0, 0, 0)}. It was already proved in [4] that
these mapping are invariant with respect to the standard Lebesgue measure
dν(x1,x2, x3) = dx1dx2dx3 on R3, yet their ergodicity is still under investiga-
tion.

5 Conclusion

As we have demonstrated, the method of studying ergodic properties of dis-
crete mappings, based on the analytical discretization of the Frobenius-Perron
operator, proved to be very effective in the case of discrete dynamical systems
of Boole type with infinite invariant measure. In particular, as it was still
observed and used by S. Ulam for finding the approximation of the invariant
measures for discrete mappings, the fixed point theory devised by Frobenius
and Perron theory for non-negative stochastic matrices, can be applied with
success to analyzing the dynamical and spectral properties of the related in-
variant measures.
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