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Abstract. We consider a few classes of strong limit theorems for compound renewal
processes (random sums, randomly stopped sums) D(t) =

∑N(t)
i=1 Xi under various

assumptions on the renewal counting process N(t) and random variables {Xi, i ≥ 1}.
First of all we present sufficient conditions for strong (a.s.) approximation of D(t) by
a Wiener or α-stable Lévy process under various dependent and moment conditions
on summands, mainly focused on the cases of independent, ϕ-mixing and associated
r.v. On the next step the investigation of the rate of growth of the process D(t) and
it’s increments D(t+at)−D(t), when at grows, is carried out. Useful applications in
risk theory are studied; particularly, non-random bounds for the rate of growth and
fluctuations of the risk processes in classical Cramer-Lundberg and renewal Sparre
Andersen risk models are discussed as well as the case of risk models with stochastic
premiums.
Keywords: Compound Renewal Process, Random Sum, Limit Theorem, Strong
Approximation, Integral Tests, Risk Process.

1 Introduction

Let {Xi, i ≥ 1} be random variables (r.v.), S(t) =
∑[t]
i=1Xi, t > 0, S(0) = 0.

Also suppose that {Zi, i ≥ 1} is a sequence of non-negative i.i.d.r.v., indepen-
dent of {Xi}, with common distribution function (d.f.) F1(x), characteristic
function (ch.f.) f1(u) and EZ1 = 1/λ > 0,

Z(x) =

[x]∑
i=1

Zi, x > 0, Z(0) = 0,

and define the renewal (counting) process

N(t) = inf{x ≥ 0 : Z(x) > t}.

Compound renewal processes (random sums, randomly stopped
sums, compound sums) are defined as

D(t) = S(N(t)) =

N(t)∑
i=1

Xi,
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where r.v. {Xi, i ≥ 1} and renewal process N(t) are given above.

Limit theorems for D(t) =
∑N(t)
i=1 Xi became rather popular during last 20

years or so ( mainly they deal with weak convergence). This topic is interest-
ing not only from theoretical point of view, but also due to numerous practical
applications, since mentioned processes often appear in useful applications in
queuing theory (accumulated workload input into queuing system in time inter-
val (0,t)), in risk theory (total claim amount to insurance company up to time
t), in financial mathematics (total market price change up to time t) and in
certain statistical procedures. The most popular example is compound Poisson
process, when N(t) is a a homogeneous Poisson process.

This paper presents a few classes of strong limit theorems for compound
renewal processes (random sums), which summarize authors previous results
obtained during last five years. The first class is a strong invariance principle
(SIP), other terms are strong approximation or almost sure approximation.

Definition. We say that a random process {D(t), t ≥ 0} admits strong
approximation by the random process {η(t), t ≥ 0}, if D(t) (or stochastically
equivalent D∗(t)) can be constructed on the rich enough probability space
together with η(t) in such a way that a.s.

|D(t)− η(t)| = o(r(t)) or O(r(t)) as t→∞, (1)

where approximating error (error term) r(.) is a non-random function.
While week invariance principle provides the convergence of distributions,

the strong invariance principle describes how “small” can be the difference
between trajectories of D(t) and approximating process η(t).

Concrete assumptions on {Xi, i ≥ 1} and {Zi, i ≥ 1} clear up the type of
approximating process and the form of error term. Below we mainly focused
on the case of i.i.d.r.v. {Xi} , as well as on ϕ-mixing and associated summands
and present some general results concerning sufficient conditions for strong
approximation of D(t) by a Wiener or α-stable Lévy process. Corresponding
proofs are based on the rather general theorems about the strong approximation
of superposition of càd-làg processes, not obligatory connected with partial
sums, Zinchenko ([13], [14]).

SIP-type theorems themselves can serve as a source of a number of interest-
ing strong limit results for compound renewal processes: really, using (1) with
appropriate error term one can easily transfer the results about the asymptotic
behavior of the Wiener or α-stable Lévy process on the asymptotic behavior
of random sums. Thus, the second class of limit theorems deal with the rate
of growth of D(t) and it’s increments. For instance, a number of integral tests
for investigation the rate of growth of the process D(t) and it’s increments
D(t + at) −D(t), when at = a(t) grows, are proposed. As a consequence var-
ious modifications of the LIL and Erdös-Rényi-Csörgő-Révész-type strong law
of large numbers (SLLN) are obtained.

2 SIP for compound renewal processes (random sums)

2.1. Independent summands. Next three theorems (Zinchenko[13], [14])
present sufficient conditions on independent summands {Xi} and inter-renewal
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intervals {Zi}, which provide a.s. approximation of the random sums of i.i.d.r.v.
with finite or infinite variance and clear up the type of approximating process
and the form of error term in this case.

More precise, suppose that {Xi, i ≥ 1} are i.i.d.r.v., with common distri-
bution function (d.f.) F (x), characteristic function (ch.f.) f∗(u), EX1 = m,
V arX1 = σ2 if E|X1|2 < ∞. Denote V arZ1 = τ2, if E|Z1|2 < ∞, ν2 =
σ2λ+m2τ2λ3.

Theorem 1. (i) Let E|X1|p1 < ∞, E|Z1|p2 < ∞, p = min{p1, p2} > 2, then
{Xi} and N(t) can be constructed on the same probability space together with
a standard Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))− λmt− νW (t)| = o(T 1/p); (2)

(ii) if p = 2, then right side of (2) is o(T ln lnT )1/2;
(iii) if E exp(uX1) < ∞, E exp(uZ1) < ∞ for all u ∈ (0, uo), then right-hand
side of (2) is O(lnT ).

Next suppose that {Xi} are attracted to α-stable law with 1 < α < 2,
|β| ≤ 1, then approximating process for S(t) is a stable process Yα(t) (condi-
tion α > 1 is needed to have a finite mean). Below we use following

Assumption (C) : there are a1 > 0, a2 > 0 and l > α such that for |u| < a1

|f(u)− gα,β(u)| < a2|u|l, (3)

where f(u) is a ch.f. of (X1−EX1) if 1 < α < 2 and ch.f. of X1 if 0 < α ≤ 1,
gα,β(u) is a ch.f. of the stable law.

Assumption (C) not only provides normal attraction of {Xi, i ≥ 1} to the
stable law Gα,β(x), but also leads to the rather “good” error term q(t) =
t1/α−%, % > 0, in SIP for usual partial sums S(t).

Theorem 2. Let {Xi} satisfy (C) with 1 < α < 2, |β| ≤ 1, EZ2
1 <∞. Then

{Xi}, {Zi}, N(t) can be defined together with α-stable process Yα(t) = Yα,β(t),
t ≥ 0, so that a.s.

sup
0≤t≤T

∣∣S(N(t))−mλt− Yα,β(λt)
∣∣ = o(T 1/α−%1), %1 ∈ (0, ρ0), (4)

for some %0 = %0(α, l) > 0 .

Corollary 1 (SIP for compound Poisson process). Theorems 1, 2 hold
if N(t) is a homogeneous Poisson process with intensity λ > 0, in this case
ν2 = λEX2

1 .

Theorem 3. Let {Xi} satisfy assumption (C) with 1 < α1 < 2 and {Zi}
satisfy (C) with 1 < α2 < 2, α1 < α2, then

sup
0≤t≤T

∣∣S(N(t))−mλt− Yα1,β1(λt)
∣∣ = o(T 1/α1−%2) a.s. (5)

for some %2 = %2(α1, l) > 0.
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2.2. SIP for random sums of dependent r.v. Further development
is connected with dependent summands: martingales, weakly dependent r.v.,
mixing and associated sequences. Below we present only few result in this
area, connected with ϕ-mixing and associated summands; more results on this
topic as well as detail rigorous proofs and wide bibliography can be find in the
author’s previous work [15].

Throughout this Section, unless otherwise stated, we suppose that inter-
occurrence time intervals {Zi} for renewal process N(t) have finite moments
E|Z1|p <∞ of order p > 2.

2.2.1. ϕ-mixing sequences. Given r.v. {Xi, i ≥ 1}, let F ba denote the
σ-field generated by Xa, Xa+1, . . . , Xb, a < b < ∞, and F∞b – the σ-field
generated by Xb, Xb+1, . . . .

Definition. Sequence {Xi, i ≥ 1} is said to be ϕ-mixing if there exist a
sequence {ϕ(n)} of real numbers, ϕ(n) ↓ 0 as n→∞, such that for each t ≥ 1,
n > 0, A ∈ F t1 , B ∈ F∞t+n

|P (AB)− P (A)P (B)| ≤ ϕ(n)P (A) (6)

Theorem 4. Let {Xi, i ≥ 1} be strictly stationary ϕ-mixing sequence with
EX1 = m, E|X1|2+δ <∞. Suppose

∞∑
n=1

φ1/2(n) <∞ (7)

and

0 < lim
n→∞

n−1E

(
n∑
i=1

(Xi −m)

)2

= σ2
1 <∞. (8)

Then {Xi} and N(t) can be constructed on the same probability space together
with a Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))−mtλ− νW (t)| = O(T 1/2−ϑ1), ν2 = σ2
1λ+m2τ2λ3 (9)

for some ϑ1 = ϑ1(δ, p) > 0.

2.2.2. Associated summands.
Definition. R.v. X1, . . . , Xn are associated, if for any two coordinate-

wise nondecreasing functions f, g : Rn → R1,

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

)
≥ 0

whenever the covariance is defined. A sequence {Xi, i ≥ 1} is associated, if
every finite sub-collection is associated.

A lot of interesting limit theorems for partial sums of associated summands
are presented by Bulinski and Shashkin [1], Yu [17].

Theorem 5. Let {Xi, i ≥ 1} be a strictly stationary associated sequence, EX1 =
m. Suppose that E|X1|2+δ <∞ for some δ > 0 and Cox-Grimmett coefficient

u(n) = sup
k≥1

∑
j:|j−k|≥n

Cov(XjXk) = O(e−θn) (10)
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for some θ > 0, inter-renewal intervals {Zi, i ≥ 1} are i.i.d.r.v. with 0 <
EZ1 = 1/λ <∞, τ2 = V arZ1 <∞. Denote

E(X1 −m)2 + 2
∑
i≥1

E(X1 −m)(Xi −m) = σ2
2 > 0. (11)

Then {Xi} and N(t) can be constructed on the same probability space together
with a Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))−mtλ− νW (t)| = O(%(T )), ν2 = σ2
2λ+m2τ2λ3, (12)

where error term is O(%(T )) = O(T 1/2−ϑ2) for some ϑ2 = ϑ2(δ, p) > 0, when
E|Z1|p <∞ for p > 2, and error term is o((T ln lnT )1/2), if Z1 has only second
moment.

Corollary 2 (SIP for Poisson random sums). Theorems 4, 5 hold if N(t)
is a homogeneous Poisson process with intensity λ > 0.

3 SIP and rate of growth of compound renewal
processes (random sums)

As it was already mentioned, SIP is a nice background for further investigation
of the asymptotic behavior of compound renewal processes. Using SIP with
appropriate error term one can easily extend the results about the asymptotic
behavior of approximating Wiener or stable Levy process on the rate of growth
of D(t), when D(t) admits a.s. approximation by one of the mentioned above
processes. Formalizing this idea and extending the approach due to Philipp
and Stout [9], we formulate rather general theorems (not obligatory connected
with random sums). We start with the case, when D(t) admits a.s. approxi-
mation by a standard Wiener process.

Definition. Function f(t) is an upper function for the processX(t), t→∞,
if P {lim supt→∞X(t)/f(t) ≤ 1} = 1 and f(t) is a lower function for X(t), if
P {lim supt→∞X(t)/f(t) ≥ 1} = 1.

Theorem 6. Suppose that random process D(t) admits a.s. approximation by
a standard Wiener process W (t) with an error term O(t1/p), p > 2, i.e.

sup
0≤t≤T

|D(t)−Mt− νW (t)| = O(T 1/p) a.s. , M ∈ R1, ν > 0, (13)

then function f(t) = νt1/2h(t), h(t) ↑ ∞, ν > 0, will be an upper function for
centered process (D(t)−Mt), if

I1(h) =

∫ ∞
1

t−1h(t) exp{−h2(t)/2t}dt <∞,

and it will be a lower one, if I1(h) =∞.
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Theorem 7. If random process D(t) admits a.s. approximation (13) by a
standard Wiener process W (t) with an error term O(t1/p), p > 2, then a.s.

lim sup
t→∞

|D(t)−Mt|√
2t ln ln t

= ν. (14)

The proofs of these theorems easily follows from the famous Kolmogorov-
Petrovski test and classical LIL for a Wiener process and form of error term in
(13). For details see Zinchenko ([13] - [16]). Similarly, Chung’s LIL for Wiener
process obviously provides

Theorem 8. Let D(t) be as in previous Theorem, then a.s.

lim inf
T→∞

(
8 ln lnT

π2T

)1/2

sup
0≤t≤T

|D(t)−Mt| = ν. (15)

Now consider the case of i.i.d. summands. Obviously Theorems 6 – 8
immediately yield following statements:

Corollary 3. Let E|X1|p1 < ∞, E|Z1|p2 < ∞ for some p1 > 2, p2 > 2,
EX1 = m, 0 < EZ1 = 1/λ < ∞, then f(t) = νt1/2h(t), h(t) ↑ ∞ will be
an upper function for centered process (D(t)−mλt) = (S(N(t))−mλt), if
I1(h) <∞, and lower function, if I1(h) =∞.

Corollary 4 (Classical LIL for random sums of i.i.d.r.v.). Let {Xi, i ≥
1} and {Zi, i ≥ 1} be independent sequences of i.i.d.r.v., EX1 = m, 0 < EZ1 =
1/λ <∞, σ2 = V arX1 <∞, τ2 = V arZ1 <∞. Then a.s.

lim sup
t→∞

|S(N(t))−mλt|√
2t ln ln t

= ν, ν2 = λσ2 + λ3m2τ2. (16)

Corollary 5 (Chung’s LIL for random sums)). Let {Xi} and {Zi} be as
in Corollary 4, then a.s.

lim inf
T→∞

(
8 ln lnT

π2T

)1/2

sup
0≤t≤T

|S(N(t))−mλt| = ν, ν2 = λσ2 + λ3m2τ2. (17)

Since random sums S(N(t)) of dependent r.v., introduced in sub-sections
2.2.1 and 2.2.2, also satisfy (13) with M = λm, ν2 = σ2

i λ + m2τ2λ3, i = 1, 2,
1/p = (1/2)− ϑ for some ϑ > 0, Theorems 6– 8 yield following Corollaries:

Corollary 6 (Classical LIL for random sums, associated summands).
Let {Zi} be i.i.d.r.v. with 0 < EZ1 = 1/λ < ∞, τ2 = V arZ1 < ∞, {Xi}
constitute the strictly stationary associated sequence with mean EX1 = m and
covariance, satisfying sufficient conditions for SIP (Theorem 5), then a.s.

lim sup
t→∞

|S(N(t))−mλt|√
2t ln ln t

= ν, ν2 = λσ2
2 + λ3m2τ2. (18)

Corollary 7 (Classical LIL for random sums, φ-mixing summands).
Statement analogous to (18) holds with corresponding σ and ν for strictly sta-
tionary φ-mixing summands satisfying all conditions of Theorem 4.
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On the other hand, when independent summands are attracted to the
stable distribution Gα,β , which is not concentrated on the half of the axe, from
Theorem 2 and results for a stable processes (Donsker and Varadhan [4]) follows

Corollary 8. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2 and {Zi, i ≥ 1} be
as in Corollary 4, then a.s.

lim inf
T→∞

(
ln lnT

T

)1/α

sup
0≤t≤T

|S(N(t))−mλt| = Cα,βλ
1/α, Cα,β > 0. (19)

When summands {Xi, i ≥ 1} are attracted to the asymmetric stable law
Gα,−1, then the approximating process for D(t) = S(N(t)) is a stable process
Yα,−1(t) without positive jumps, whose rate of growth can be successfully in-
vestigated with the help of certain integral test. Combining this fact with the
SIP-type Theorem 2 or Theorem 3, we get

Theorem 9. Let {Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, β = −1 and
EZ2

1 <∞ or {Zi, i ≥ 1} satisfy (C) with 1 < α2 < 2, α1 < α2, |β| ≤ 1. Then
f(t) = t1/αh(t), where regular h(t) ↑ ∞, will be an upper function for centered
process (D(t)−mλt), if

I2(h) =

∫ ∞
1

t−1h−θ1/2(t) exp{−B1h
θ1(t)}dt <∞,

where

B1 = B(α1) = (α1 − 1)α−θ11 | cos(πα1/2)|1/(α1−1), θ1 = α1/(α1 − 1), (20)

and f(t) will be a lower function, if I2(h) =∞.

As a consequence we easily obtain following modification of the LIL:

Corollary 9. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1. Assume
that EZ2

1 <∞. Then a.s.

lim sup
t→∞

S(N(t))−mλt
t1/α(B−1 ln ln t)1/θ

= λ1/α, (21)

B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1). (22)

Corollary 10. Corollaries 3 – 9 are true, when N(t) is a homogeneous Poisson
process with intensity λ > 0.

4 How big are increments of the random sums?

Partial answer on this question also can be obtained with the help of the SIP-
type results for compound renewal processes (as it will be demonstrated below).
More precisely, we consider increments D(T + aT )−D(T ) = S(N(T + aT ))−
S(N(T )) and study its’ asymptotics, when aT grows as T → ∞, but not
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faster then T . A number of results in this area (but only for independent
summands) were obtained by Zinchenko and Safonova [10], who proved various
modifications of Erdös-Rényi-Csörgő-Révész law [3] for increments of random
sums using appropriate SIP-type results. Remarkable progress in studying
the magnitude of increments of compound renewal processes was achieved by
Frolov [6], Martikainen and Frolov [8] with the help of other methods. The
case of dependent summands was studied in [16], where the detail proofs of
the following theorems are presented. Notice that assumptions on {Xi, i ≥ 1}
and {Zi, i ≥ 1}, which determine the form of approximating process and error
term, have impact on the possible length of intervals aT under consideration.

4.1. Summands with finite variance. We start with the case of i.i.d.
r.v. with “light tails” , when {Xi} and {Zi} satisfy Cramer’s condition. In this
case the approximating process is a standard Wiener process and error is the
smallest, i.e. O(lnT ), so aT may increase in a slowest rate.

Theorem 10. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be independent sequences of
i.i.d.r.v., EX1 = m, varX1 = σ2, EZ1 = 1/λ > 0, varZ1 = τ2,

E exp(uX1) <∞, E exp(uZ1) <∞, as |u| < u0, u0 > 0, (23)

function aT , T ≥ 0 satisfies following conditions: 0 < aT < T and T/aT does
not decrease in T . Also assume that

aT / lnT →∞ as T →∞. (24)

Then a.s.

lim sup
T→∞

|D(T + aT )−D(T )−mλaT |
γ(T )

= ν, (25)

where ν2 = λσ2 + λ3m2τ2, γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

For concrete aT = T ρ, 0 < ρ < 1 or aT = (lnT )ρ, ρ > 1 we have:

Corollary 11. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be the same as in Theorem 10.
Then a.s.

lim supT→∞
|D(T + T ρ)−D(T )−mλT ρ|

(2(1− ρ)T ρ lnT )
1/2

= ν, 0 < ρ < 1,

lim supT→∞
|D(T + (lnT )ρ)−D(T )−mλ(lnT )ρ|(

2 ln(ρ+1) T
)1/2 = ν, ρ > 1.

The weaker moment conditions lead to more restrictive conditions on the
rate of growth of aT .

Theorem 11. Let {Xi, i ≥ 1}, {Zi, i ≥ 1} and aT satisfy all conditions of
previous theorem with following assumptions used instead of (23)

EXp1
1 <∞, p1 > 2, EZp21 <∞, p2 > 2.

Then (25) is true if aT > c1T
2/p/ lnT for some c1 > 0, p = min{p1, p2}.
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Auxiliary SIP-type theorems are also useful in the case of dependent sum-
mands (discussed in Section 2). For example, Theorem 5 or Corollary 2 yield

Theorem 12. Let N(T ) be homogeneous Poisson process with intensity λ > 0
and let {Xi} be the strictly stationary associated sequence with mean EX1 = m
and covariance, satisfying sufficient conditions for SIP (Theorem 5). Sup-
pose that function aT , T ≥ 0 satisfies all conditions of Theorem 10 and aT >
c1T

2/p/ lnT for some c1 > 0, 1/p = (1/2)− ϑ, 0 < ϑ < 1/2. Then a.s.

lim sup
T→∞

|S(N(T + aT ))− S(N(T ))−mλaT |
γ(T )

= ν, (26)

where ν2 = λ(σ2
2 +m2), γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

4.2. Summands attracted to the stable law. When i.i.d.r.v. {Xi, i ≥
1} are attracted to an asymmetric stable we have

Theorem 13. Suppose that {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1,
EX1 = m, EZ1 = 1/λ > 0, EZ2

1 < ∞. Function aT is non-decreasing,
0 < aT < T , T/aT is also non-decreasing and provides dT

−1T 1/α−%2 → 0 for
certain %2 > 0 determined by the error term in SIP-type Theorem 2. Then a.s.

lim sup
T→∞

D(T + aT )−D(T )−mλaT
dT

= λ1/α, (27)

where normalizing function dT = a
1/α
T {B−1(ln lnT + lnT/aT )}1/θ, constants

B, θ are defined in (22).

5 How small are increments of the random sums?

SIP-type results can help in solution of this problem too. For instance, com-
bining conclusions of Theorem 1 and corresponding facts for a Wiener pro-
cess (Csörgő and Révész[3]), we have following statement, which holds when
summands {Xi} as well as inter-occurrence times {Zi} satisfy the Cramer’s
condition:

Corollary 12. Assume that i.i.d.r.v. {Xi, i ≥ 1} and {Zi, i ≥ 1} satisfy all
conditions of the Theorem 10, ν2 = λσ2 + λ3m2τ2and aT (lnT )−3 → ∞ as
t→∞, then a.s.

lim
T→∞

γ(T, aT ) inf
0≤t≤T−aT

sup
0≤s≤aT

|D(t+ s)−D(t)−mλaT | = ν. (28)

6 Applications in risk theory

6.1. Sparre-Anderssen collective risk model. Within this model (rather
popular in the actuarial mathematics) the risk process, which describes the
evolution of reserve capital, is defined as

U(t) = u+ ct−
N(t)∑
i=1

Xi = u+ ct− S(N(t)), (29)
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where: u ≥ 0 denotes an initial capital; c > 0 stands for the gross premium
rate; renewal (counting) process N(t) = inf{n ≥ 1 :

∑n
i=1 Zi > t} counts the

number of claims to insurance company in time interval [0,t]; positive i.i.d.r.v.
{Zi, i ≥ 1} are time intervals between claim arrivals; positive i.i.d.r.v.{Xi}
with d.f. F (x) denote claim sizes; the sequences {Xi, i ≥ 1} and {Zi, i ≥ 1}
are independent; EX1 = m, EZ1 = 1/λ > 0.

Classical Cramér-Lundberg risk model is model (29), where N(t) is a ho-
mogeneous Poisson process with intensity λ > 0.

In the framework of collective risk model random sum D(t) =
∑N(t)
i=1 Xi =

S(N(t)) can be interpreted as a total claim amount arising during time interval
[0, t], and increments

D(T + aT )−D(T ) =

N(T+aT )∑
i=N(T )+1

Xi

as claim amounts during the time interval [T, T + aT ].

Since process D(t) is a typical example of the compound renewal process
(compound Poisson process in Cramér-Lundberg model), main results of the
Sections 2 – 5 can be applied to investigation of the risk process U(t). Fist of
all, Theorems 1 – 3 yield the SIP-type results for D(t) and U(t) under various
assumptions on the claim sizes {Xi, i ≥ 1} and inter-arrival times {Zi, i ≥ 1}.

For small claims and {Zi} satisfying Cramér’s condition, processes D(t)
and U(t) admit strong approximation by a Wiener process with the error term
O(ln t); for large claims with finite moments of order p > 2 the error term
is o(t1/p), if p = 2, then error term is o((t ln ln t)1/2). For catastrophic events
claims can be so large that their variance is infinite. In this case we assume that
{Xi} are in domain of normal attraction of asymmetric stable law Gα,1 with
1 < α < 2, β = 1, and additionally satisfy condition (C). Then by Theorems 2
and 3 an approximating process for D(t) is α-stable process Yα,1 with 1 < α <
2, β = 1, and risk (reserve) process U(t) admits a.s. approximation by α-stable
process Yα,−1, 1 < α < 2, β = −1, which has only negative jumps; the error
term is presented in mentioned theorems.

The form of error term in SIP is “good” enough for investigation the rate
of growth of total claims and asymptotic behavior of the reserve process. Due
to results of Section 3 various modifications of the LIL for D(t) can be obtained
almost without a proof. So, in the case of small claims (satisfying Cramér’s
condition) or large claims ( but with finite moments of order p ≥ 2) for large
t we can a.s. indicate upper/lower bounds for growth of total claim amounts
D(t) as mλt±ν

√
2t ln ln t and for reserve capital U(t) as u+tρmλ±ν

√
2t ln ln t,

where σ2 = V arX1, τ2 = V arZ1, ν2 = λσ2 + λ3m2τ2, ρ = (c − λm)/λm > 0
is a safety loading.

For large claims in domain of normal attraction of asymmetric stable law
Gα,1 with 1 < α < 2, β = 1 (for instance, Pareto type r.v. with 1 < α < 2)
Corollary 9 for large t provides a.s. upper bound for the risk process

U(t) ≤ u+ ρmλt+ λ1/αt1/α(B−1 ln ln t)1/θ.
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SIP-type results also help to answer on the question: how large can be
fluctuations of the total claims/payments on the intervals whose length aT
increases as T → ∞. Indeed, under appropriate conditions on claim size dis-
tributions and for rather “ large” intervals aT (but growing not faster then T )
increments D(T + aT ) − D(T ) satisfy variants of Erdös-Rényi-Csörgő-Révész
LLN similarly to (25) or (27). More results in this direction are presented in
[12], [14].

Until recently, main known results concerning U(t) and D(t) were focused
on the case of independent claim sizes {Xi, i ≥ 1}. Our approach allows to
study the case of dependent claims too. Thus, certain results about strong ap-
proximation of the risk process and approximation of ruin probabilities, bounds
for rates of growth and fluctuations of total claim amounts in the case of weakly
ϕ-mixing and associated r.v. (studied in Section 2) can be obtained similar to
how it was done for independent summands. Our general approach also gives
a possibility to study more complicated risk models with stochastic premiums.

6.2. Risk process with stochastic premiums. Within the risk model
with stochastic premiums the risk process U(t), t ≥ 0, is defined as

U(t) = u+Q(t) = u+Π(t)− S(t) = u+

N1(t)∑
i=1

yi −
N(t)∑
i=1

xi, (30)

where: u ≥ 0 is an initial capital; point process N(t) models the number of
claims in the time interval [0, t]; positive r.v. {xi : i ≥ 1} are claim sizes;
Ex1 = µ1; point process N1(t) is interpreted as a number of polices bought
during [0, t]; r.v. {yi : i ≥ 1} stand for sizes of premiums paid for corresponding
polices, Ey1 = m1.

We call U(t) (or Q(t)) the Cramér-Lundberg risk process with sto-
chastic premiums(CLSP) if N(t) and N1(t) are two independent Poisson
processes with intensities λ > 0 and λ1 > 0; {xi} and {yi} are two sequences of
positive i.i.d.r.v. independent of the Poisson processes and of each other with
d.f. F (x) and G(x), respectively, λ1Ey1 > λEx1.

This model, being a natural generalization of the classical Cramér-Lundberg
risk model, was studied by Zinchenko and Andrusiv [11]. Korolev et al. [7]
present an interesting example of using (30) for modeling the speculative ac-
tivity of money exchange point and optimization of its profit.

Notice that process Q(t) = Π(t)−S(t) is again a compound Poisson process
with intensity λ∗ = λ+ λ1 and d.f. of the jumps G∗(x) = λ1

λ∗G(x) + λ
λ∗F

∗(x),
where F ∗(x) is a d.f. of the random variable (−x1). In the other words

Q(t) =

N∗(t)∑
i=1

ξi, (31)

where N∗(t) is homogeneous Poisson process with intensity λ∗ = λ + λ1 and
i.i.d.r.v. ξi have d.f. G∗(x).

Thus, all results for compound Poisson process, obtained in Sections 2 – 5,
are applicable to Q(t). For instance, we have following SIP-type results:
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Theorem 14 (SIP for CLSP, finite variance case). (I)If in model (30)
both premiums {yi} and claims {xi} have moments of order p > 2, then there
is a standard Wiener process {W (t), t ≥ 0} such that a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = o(T 1/p), σ̃2 = λ1m2 + λµ2, (32)

where µ2 = Ex21, m2 = Ey21.
(II) If premiums {yi} and claims {xi} are light-tailed with finite moment

generating functions in some positive neighborhood of zero, then a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = O(log T ), (33)

Proof immediately follows from Corollary 1 since Q(t) is a compound Pois-
son process (see (31)) with intensity λ∗ = λ + λ1, whose jumps have mean
ã
λ∗ = λ1

λ∗m1 − λ
λ∗µ1, and second moment σ̃2

λ∗ = λ1

λ∗m2 + λ
λ∗µ2.

For catastrophic accidents claims can be so large that they have infinite
variance, i.e. belong to the domain of attraction of a certain stable law. Thus,
due to Theorem 2, for Cramér-Lundberg risk process with stochastic premiums
we have:

Theorem 15 (SIP for CLSP, large claims attracted to α-stable law).
Suppose that claim sizes {xi} satisfy (C) with 1 < α < 2, β ∈ [−1, 1], premiums
{yi} are i.i.d.r.v. with finite variance, then a.s.∣∣Q(t)− (λ1m1 − λµ1)t− (λ+ λ1)1/αYα,β(t)

∣∣ = o(t1/α−%2), ρ2 ∈ (0, ρ0), (34)

for some %0 = %0(α, l) > 0.

On the next step we focus on investigation the rate of growth of risk process
Q(t) as t→∞ and its increments Q(t+ at)−Q(t) on intervals, whose length
at grows, but not faster than t. Again the key moments are representation of
Q(t) as compound Poisson process (31), Theorems 14, 15 and application of
the results obtained in Sections 3–5, namely, various modifications of the LIL
and Erdös-Rényi-Csörgő-Révész law for compound Poisson processes.

Corollary 13 (LIL for CLSP). If in model (30) both premiums {yi} and
claims {xi} have moments of order p ≥ 2, then

lim sup
t→∞

|Q(t)− ãt|√
2t ln ln t

= σ̃, where ã = λ1m1 − λµ1, σ̃2 = λ1m2 + λµ2.

Next we shall consider the case when r.v. {xi, i ≥ 1} in CLSP-model (30)
are attracted to an asymmetric stable law Gα,1, but premiums have Ey21 <∞.
Theorem 9 and Corollary 9 yield following statement:

Corollary 14. Let {xi, i ≥ 1} satisfy condition (C) with 1 < α < 2, β = 1
and Ey21 <∞. Then a.s.

lim sup
t→∞

Q(t)− (λ1m1 − λµ1)t

t1/α(B−1 ln ln t)1/θ
= (λ+ λ1)1/α,

where B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1).
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Corollary 15 ( Erdös-Rényi-Csörgő-Révész law for CLSP-model). Let
in CLSP-model claims {xi, i ≥ 1} and premiums {yi, i ≥ 1} be independent
sequences of i.i.d.r.v. with Ex1 = µ1, Ex21 = µ2, Ey1 = m1, Ey21 = m2 and
finite moment generating functions

E exp(ux1) <∞, E exp(uy1) <∞ as |u| < u0, u0 > 0.

Assume that non-decreasing function aT , T ≥ 0, satisfies all conditions of
Theorem 13, then a.s.

lim sup
T→∞

|Q(T + aT )−Q(T )− aT (λ1m1 − λµ1)|
γ(T )

= σ̃,

where γ(T ) = {2aT (ln lnT + lnT/aT )}1/2, σ̃2 = λ1m2 + λµ2.

Remark. General Sip-type theorems also give the possibility to investigate
more general cases, when {yi} and {xi} are sequences of dependent r.v., for
example, associated or weakly dependent, N(t) and N1(t) can be renewal pro-
cesses, Cox processes, ets. Partly, such problems were solved in [12].
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