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1    Introduction 

Any change in the parameters of chaotic oscillations is associated, eventually, 

with the restructuring of the corresponding chaotic attractor [1,2]. In dynamic 

systems with a single chaotic attractor such restructuring is impossible without 

changing the conditions of existence of chaotic motion [3]. In contrast, in 

systems that have composite chaotic multiattractor, represents the union of the 

set of local chaotic attractors, the changes of the chaotic signal can be obtained 

by variations in the number and relative location of local attractors – without 

changing the conditions of existence of chaotic oscillations on the local 

attractors [4,5]. 

However, the ability of this approach is still limited due to the lack of methods 

of restructuring of the internal structure of the composite multiattractor. Well-

known dynamical systems that has this multiattractor, allow the change only the 

total number of elements in the composition of multiattractor and its position 

relative to the origin at a constant order of local chaotic attractors inside 

multiattractor [6-12]. So, when you rebuild a "two-dimensional" multiattractor 

composite with the maximum dimension of 5x5 local attractors can be obtained, 

for example, the configuration shown in Fig.1,a, b, c. But the configuration 

shown in Fig.1,d,e  at the present time it is impossible to implement. 

Obviously, the possibility of restructuring the order of local attractors within a 

compound multiattractor greatly expands the capabilities of this method of 

control chaotic fluctuations, because the number of available configurations 

multiattractor will increase significantly. Therefore, the search for ways of 

restructuring the composite structure of the composite chaotic multiattractor is 

legitimate interest. 
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2 Method for changing the compositional structure of 

compound chaotic multiattractor 

 
Consider the following dynamic system with "two-dimensional" composite 

chaotic multiattractor [12]: 
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Fig.1. Examples of various types of structure of compound chaotic 

multiattractor with the compositional dimension of 5x5 elements. 
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The functions H1(x) and H2(y) provide a replication of the original attractor of a 

dynamical system and combining it with their copies in a single multiattractor. 

The constants Mk, Nk define the number of elements in the composition of 

multiattractor; constants hk is equal to half of the length of local attractors along 

variable k; the constants sk take into account the asymmetry of the local 

attractors relative to the centers of the local coordinate systems; the constants dk, 

set the steepness of the intermediate segments of the functions Hk(k); all the 

constants with index k=1, refer to functions H1(x), the constants with index k=2 

refer to functions H2(y), 1=x, 2=y.  

Multiattractor system (1), (2) consists of (1+M1+N1)(1+M2+N2) chaotic 

attractors are identical to the attractor of the original system. Its structure can be 

Fig.2, a. Composite structure of chaotic multiattractor of the dynamic system 

(1), (2) when M1=N1=M2=N2=2. A11...A55 – local chaotic attractors; b, c. 

Examples of types of composite structure of composite chaotic multiattractor, 

which can be implemented in the dynamic system (3), (4) when 

M1=N1=M2=N2=2. 
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represented as a two-dimensional array of elements (cells) of the phase space, 

the same region of the phase space of the original system, in which is its chaotic 

attractor [4]. 

When you use replicate operators of the form (2) all possible positions in the 

structure of multiattractor system (1) are already occupied by local attractors. 

Therefore, to be able to rebuild its composite structure, it should be possible to 

remove from multiattractor some local attractors. Delete local attractor is 

possible only together with the cell of the phase space containing it. This can be 

done by extending and locking each other in the adjacent cell. In result of the 

region of phase space previously contained a local attractor, will be replaced by 

"blank" areas adjacent cells. 

For example, when M1=N1=M2=N2=2 multiattractor of system (1), (2) has a 

composite structure, shown in Fig.1. To obtain, for example, the structure 

shown in Fig.2,b, it is necessary to remove the local attractors A11, A12, A24, A32, 

A33, A34, A42, A43, A55. To obtain the structure shown in Fig.2,c, you should 

remove the elements A11, A12, A13, A15, A21, A23, A25, A31, A44, A45, A51, A52, 

A54, A55. In the first case, this problem can be solved by expanding the cell of 

the phase space that contains the local attractors A13, A14, A21, A22, А23, A25, A31,  

A35, A41, A44, A45, A52, A53, A54, for example, as shown in Fig.2,b. In the second 

– extending cells that contain local attractors A14, A22, A24, A32, A33, A34, A35, 

A41, A42, A43, A53, for example, as shown in Fig.2,c. 

 

Since the formation of the phase cells provide the replicate functions, change the 

configuration of the cell requires a corresponding change of these functions. In 

their equation it is necessary to enter the members ensuring the displacement of 

cell boundaries relative to the starting position. For this equation (2), must be 

converted to the following form: 
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    (3)  

 

where m()k,j, n()k,j is the function defining the deviation of the boundaries 

of the expanding cells from their position, defined by the equations (2); 



Chaotic Modeling and Simulation (CMSIM)  3:  307- 316, 2017      311 
 

=1...L – variables that are subject to shifting boundaries, L is the number 

of these variables. 

After that, the system (1) is converted to the form: 
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In Fig.3 and Fig.4 shown graphs of functions m(y)1,j, n(y)1,j, m(x)2,j, n(x)2,j, 

providing the formation in the system (4) configurations of phase cells, shown 

in Fig.2,b (solid lines) and in Fig.2,c (dashed lines).  

        .00,20,20,10,1  xnxmynym  Other deflecting functions, shown in 

Fig.3 and Fig.4, are piecewise linear dependence can be expressed the following 

expression: 
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where Q is the number of linear segments in the function. 

The values of the parameters of equation (5) corresponding to the deflecting 

functions needed for the formation in the system (4) configurations of the phase 

cells is shown in Fig.2,b and Fig.2,c, shown in table 1 and table 2, respectively. 
 

Table 1 
Replicatio

n operator 

H1(x,y) H2(y,x) 

Deflectin

g function 
m(y)1,1 m(y)1,2 n(y)1,1 n(y)1,2 m(x)2,1 m(x)2,2 n(y)2,1 n(x)2,2 

 y y y y x x x x 

V1;W1; 1 0;0;-3U2 -R2;-3;-

3U2 

0;0;3U2 0;0;-3U2 0;0;-3U1 -R1;-1;-U1 0;0;-U1 0;0;-3U1 

V2;W2; 2 -R2;-3;-U2 0;0;-U2 -R2;3; – R2;3;-U2 -R1;-3;-U1 0;0;U1 0;1;2U1 R1;3;-U1 

V3;W3; 3 0;-2;0 -R2;-1; 0 – -R2;1;U2 0;-1;2U1 -R1;1;2U1 -R1;3;3U1 -R1;1; U1 

V4;W4; 4 0;1;2U2 0;-1;2U2 – 0;0;3U2 0;0; – R1;-3;3U1 0;0; – 0;0;3U1 

V5;W5; 5 -R2;3;3U2 R2;-3;3U2 – -R2;-3; – – 0;0;– – -R1;3;– 

V6;W6; 6 0;0; – 0;0; – – – – – – – 
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Table 2 
Replicatio

n operator 

H1(x,y) H2(y,x) 

Deflectin

g function 
m(y)1,1 m(y)1,2 n(y)1,1 n(y)1,2 m(x)2,1 m(x)2,2 n(y)1,1 n(x)2,1 

 y y y y x x x x 

V1;W1; 1 -R2;-1;-U2 -R2;-3;-

3U2 

-R2;-3;-

3U2 

0;0;-U2 0;0;-U1 0;2;0 -R1;-3;-

3U1 

R1;1;-U1 

V2;W2; 2 0;0;U2 0;0;U2 0;0;U2 R2;1;0 R1;1;0 0;0; – 0;0;U1 0;0;3U1 

V3;W3; 3 -R2;1;2U2 R2;-1; – R2;-1;2U2 -R2;1;U2 -R1;1;U1 – -R1;-1;-U2 -R1;3; – 

V4;W4; 4 0;-1; – – 0;1; – 0;0;3U2 0;0;3U1 – -R2;1; – – 

V5;W5; 5 – – – R2;-3; – R1;-3; – – – – 
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In Fig.5 and 6 represented multiattractors of dynamic system (3), (4) observed at 

A=7, B=3, С=0.25, a=0.5, b=-0.35, M1=N1=M2=N2=2, h1=1.58, s1=0, d1=30, 

h2=5.35, s2=0, d2=5. Multiattractor shown in Fig.5, has a composite structure, 

shown in Fig.2,b. Multiattractor depicted in Fig.6 has a composite structure, 

shown in Fig.2,c. 
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Fig.3. The functions defining the shifting boundaries between the cells of the 

phase space generated by the replicate operator H1(x,y) necessary for the 

formation of the composite structure shown in Fig. 2,b (solid lines) and in 

Fig.2,c (dashed lines). 
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Fig.4. The functions defining the shifting boundaries between the cells of the 

phase space generated by the replicate operator H2(y,x) necessary for the 

formation of the composite structure shown in Fig. 2,b (solid lines) and in Fig.2,c 

(dashed lines). 
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Fig.5. Example of projection onto the plane (x,y) of chaotic 

multiattractor of the system (3), (4) having a composite structure as 

shown in Fig.2,b. 
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Fig.6. Example of projection onto the plane (x,y) of chaotic multiattractor 

of the system (3), (4) having a composite structure as shown in Fig.2,c. 
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Conclusions 

 
The method provides the possibility of completely rebuilding common position 

structure of compound chaotic multiattractor that allows you to get all the 

possible configurations of these objects. The restructuring is due to the 

exclusion from multiattractor part of the elements. This is achieved by 

modifying the replicate operators, which allows them to generate the set 

configuration of the each phase cell contains a local attractor. This gives you the 

opportunity to remove some cells through their absorption advanced adjacent 

cells. Modification of replicate operators is introducing in the equation the 

additional members that specify the local offset of the phase boundaries between 

the cells relative to the starting position. 
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