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Abstract. Some of the implications of a scale invariant model of statistical mechanics to 

the physical and quantum nature of both space and time as well as quantum mechanics 

are described. At thermodynamic equilibrium, the velocity, energy, and speed of particles 

are shown to be governed by invariant Gaussian, Planck, and Maxwell-Boltzmann 

distribution functions. Physical space or Casimir vacuum is identified as a compressible 

tachyon fluid, Planck compressible ether, such that Lorentz-FitzGerald contractions 

become causal (Pauli) in accordance with Poincare-Lorentz dynamic theory of relativity 

as opposed to Einstein kinematic theory of relativity. Also, some of the implications of 

the model to the physical foundation of Riemann hypothesis are discussed. In particular, 

normalized spacing between non-trivial zeroes of Riemann zeta function are found to 

follow normalized Maxwell-Boltzmann distribution function. 
 

1  Introduction 
 

 Similarities between stochastic quantum fields [1-17] and classical 

hydrodynamic fields [18-30] resulted in recent introduction of a scale-invariant 

model of statistical mechanics and its applications to thermodynamics [31, 32], 

fluid mechanics [33], and quantum mechanics [34-36].   

 In the present study, further implications of scale invariant model of 

statistical mechanics to the quantum nature of space and time and theory of 

relativity are investigated.  Also, physical foundations of quantum mechanics as 

well as distribution of normalized spacing between non-trivial zeroes of 

Riemann zeta function are examined. 
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2  A Scale Invariant Model of Statistical Mechanics 
 

 The scale-invariant model of statistical mechanics for equilibrium galactic-, 

planetary-, hydro-system-, fluid-element-, eddy-, cluster-, molecular-, atomic-, 

subatomic-, kromo-, and tachyon-dynamics corresponding to the scale g, p, 

h, f, e, c, m, a, s, k, and t is schematically shown on the left hand side of Fig. 1 

[30].  For each statistical field, one defines particles that form the background 

fluid and are viewed as point-mass or "atom" of the field.  Next, the elements of 

the field are defined as finite-sized composite entities composed of an ensemble 
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Fig. 1. A scale-invariant model of statistical mechanics. Equilibrium--

Dynamics on the left-hand-side and non-equilibrium Laminar--Dynamics on 

the right-hand-side for scales  = g, p, h, f, e, c, m, a, s, k, and t as defined in 

Section 2. Characteristic lengths of (system, element, “atom”) are (L , ),    

and  is the mean-free-path [32].    

 

 

an ensemble of "atoms". Finally, the ensemble of a large number of "elements" 

is defined as the statistical "system" at that particular scale.  The most probable 

element of the lower scale  is identified as the “atom” mp 1 v u  of the next 

higher scale  leading to hierarchy of statistical fields shown in Fig. 2 
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3  Physical Space Identified as a Compressible Fluid that is 

Casimir Vacuum or Aristotle Fifth Element 
 

A most significant implication of the model in Figs. 1 and 2 concerns the nature 

of physical space, Casimir [37] vacuum, that is identified as a tachyonic fluid 

that is de Broglie hidden thermostat [3]. It is emphasized that space is the 

tachyonic fluid itself and not merely a container that is occupied by this fluid, as 

in the classical theories of ether [38].  Using a glass of water as an example, the 

physical space is analogous to the water itself, and not to the glass.   

 Both Descartes and Huygens recognized the significant role of Aristotle 

ether in phenomena of gravitation and optics.  For example, in harmony with the 

scale-invariant model of statistical mechanics shown in Fig. 1, the propagation 

of light in a medium called ether was suggested to be analogous to propagation 

of sound in air by Huygens [39] 

 

“As regards the different modes in which I have said the movement of Sound 

and of Light are communicated, one may sufficiently comprehend how this 

occurs in the case of Sound if one considers that the air is of such nature that it 

can be compressed and reduced to a much smaller space than that which it 

ordinarily occupies,”    

 

Also, the fundamental role of physical space, Casimir vacuum [37], in 

constitution of matter according to modern particle physics was anticipated by 

Leibniz who stated [40] 

 

“If space is an absolute reality, far from being a property or accident opposed 

to substance, it will have a greater reality than substances themselves,”  

 

Similar arguments concerning the important role of the ether as the seat of 

gravitational and electromagnetic phenomena were raised by Newton [41] and 

Maxwell [42]. The existence of the medium called ether was also found to be 

indispensable for the proper description of electrodynamics according to Lorentz 

[43, 44] 

 

“I cannot but regard the ether, which can be the seat of an electromagnetic field 

with its energy and its vibrations, as endowed with certain degree of 

substantiality, however different it may be from all ordinary matter,” 

 

The participation of ether in the transmission of perturbations as well as the 

possible granular structure of space were anticipated by Poincaré [45] 

 

“We might imagine for example, that it is the ether which is modified when it 

is in relative motion in reference to the material medium which it penetrates, 
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that when it is thus modified, it no longer transmits perturbations with the 

same velocity in every direction.” 

 

Also, the notion of ether was considered by Einstein as not only consistent with 

the general theory of relativity, but in his opinion according to GTR space 

without ether is unthinkable [46] 

 

“Recapitulating, we may say that according to the general theory of relativity 

space is endowed with physical qualities; in this sense, therefore, there exists an 

ether. According to the general theory of relativity space without ether is 

unthinkable; for in such space there not only would be no propagation of light, 

but also no possibility of existence for standards of space and time (measuring-

rods and clocks), nor therefore any space-time interval in the physical sense.  

But this ether may not be thought of as endowed with the quality characteristic 

of ponderable media, as consisting of parts which may be tracked through time.  

The idea of motion may not be applied to it.” 

 

 The statement "space without ether" shows that ether was considered as a 

medium that filled the space rather than being the space itself.  Also, because 

stochastic Planck and Boltzmann constants relate to vacuum fluctuations [32], 

contrary to the above statement by Einstein, the idea of rest rather than motion 

may not be applied to the ether.  In other words, stochastic ether cannot satisfy 

both the principles of relativity and quantum mechanics if it is at rest.  

Ironically, parallel to static rather than dynamic vacuum at Planck scale, 

Einstein also chose a static rather than dynamic universe at cosmic scale (see 

Fig. 1) that resulted in his introduction of the cosmological constant. 

 After the development of quantum mechanics it was suggested by Dirac 

[47] that stochastic ether could satisfy both quantum mechanics and relativity 

theory 

 

“We can now see that we may very well have an aether, subject to quantum 

mechanics and conforming to relativity, provided we are willing to consider the 

perfect vacuum as an idealized state, not attainable in practice. From 

experimental point of view, there does not seem to be any objection to this.  We 

must make some profound alterations in our theoretical ideas of the vacuum.  It 

is no longer a trivial state, but needs elaborate mathematics for its description.” 

 

 When space is considered to be a tachyonic compressible fluid [36], Planck 

compressible ether [43], parallel to atmospheric air that becomes compressible 

when Mach number Ma = v/a approaches unity, the ether that constitutes the 

physical space becomes compressible when Michelson number defined as Mi = 

v/c approaches unity, with a and c denoting the velocity of sound and light 

respectively. Hence, changes of density when tachyon fluid is brought to rest 

isentropically will be given by [48] 
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The notation of subscript in Eq. (1) is opposite to that in conventional gas 

dynamics [49] where stagnation quantities correspond to moving fluid such as 

stagnation enthalpy
o

2
mv / 2h h  . With  = 4/3 for photon gas and assuming 

that the transverse coordinates do not change [50] for one dimensional 

compressible flow, Eq. (1) leads to Lorentz-FitzGerlad contraction [43, 32, 36] 

o

o o

2 2 2 2

2 2

ρ
1 v / c 1 v / c ρ

1 v / c
      ,      ,     V V    


     (2)  

Thus, Ma >1 (Mi >1) corresponds to supersonic (superchromatic) flow, leading 

to formation of Mach (Poincaré-Minkowski) cone that separates the zone of 

sound (light) from the zone of silence (darkness) [48]. 

 In view of the above considerations and in harmony with ideas of Darrigol 

[51] and Galison [52], one can identify two distinct paradigms of the special 

theory of relativity [36]: 

 

(A) Poincaré-Lorentz 

Dynamic Theory of Relativity 

 Space and time (x, t) are altered due to causal effects of motion on the 

ether. 

 

 (B) Einstein 
Kinematic Theory of Relativity 

Space and time (x, t) are altered due to the two postulates of relativity: 

 

1- The laws of physics do not change form for all inertial frames of 

reference. 

2-  Velocity of light is a universal constant independent of the motion of its 

source. 

 

According to dynamic theory of relativity the relativistic effects are causal as 

emphasized by Pauli [50] and induced by the dynamic effects of motion on the 

manifold of space, ether.  It is also noted that strictly speaking, both postulates 1 

and 2 above are not valid.  This is because the speed of light is not a constant 

but a function of temperature of Casimir [37] vacuum and hence decreases ever 

so slowly with the expansion of the universe thus appears as constant on time 

scales relevant to human civilization. Also, the postulate of relativity is not valid 

since all inertial frames are distinguishable from one another through 

measurements with respect to stochastically stationary isotropic cosmic 

background radiation of Penzias-Wilson [53]. It appears that such 

distinguishability was known to Poincaré based on fundamental principles as 
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suggested by the lecture he delivered in London in 1912 shortly before he died 

[54] 
 
 

“Today some physicists want to adopt a new convention.  It is not that they are 

constrained to do so; they consider this new convention more convenient; that 

is all.  And those who are not of this opinion can legitimately retain the old 

one in order not to disturb their old habits.  I believe, just between us, that this 

is what they shall do for a long time to come,” 

 

4  A New Physical Foundation of Quantum Mechanics 
 

According to a recent study [36], the energy spectrum of all isotropic 

equilibrium statistical fields shown in Fig. 1 will be governed by the invariant 

Planck energy distribution law [55, 36]  

3

h / kT3

dN 8 h
d

u e 1
  



  





 
 

V
 (3)  

when the energy of each oscillator is  = h.  In amother recent investigation 

[56] the invariant Maxwell-Boltzmann distribution function  

2
m u / 2kTu 3/ 2 2

dN m
4  ( ) u  e du

N 2 kT

   

 



 


 (4)  

was directly derived from the invariant Planck energy distribution function.  

This result is to be expected since particle speeds are related to the square root 

of their kinetic energy. Hence, under thermodynamic equilibrium, the speed of 

particles will be governed by the invariant Maxwell-Boltzmann distribution 

function [56] leading to a hierarchy of embedded distributions at …ECD, EMD, 

and EAD … scales as shown in Fig. 2. 
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Fig. 2. Maxwell-Boltzmann speed distribution viewed as stationary spectra of 

cluster sizes for ECD, EMD, and EAD scales at 300 K [32].   

 

According to Fig. 2, one may view Maxwell-Boltzmann distribution as 

distribution of stochastically stationary particle cluster sizes that could be also 

identified as different “energy levels” of quantum mechanics.  Hence, one may 

introduce a new paradigm of the physical foundation of quantum mechanics 

according to which Bohr stationary states [57] correspond to the stochastically 

stationary sizes of particle clusters, de Broglie wave packets, governed by 

Maxwell-Boltzmann distribution function. For example, in iso-tropic turbulence 

corresponding to equilibrium eddy-dynamic at scale  = e, the statistically 

stationary sizes of “eddies” or “clusters of molecular-clusters” are governed by 

Maxwell-Boltzmann distribution function [36]. Hence, one views the transfer of 

a cluster from a small rapidly oscillating eddy j to a large slowly oscillating 

eddy i as transition from the high energy level j to the low energy level i (Fig. 2) 

as schematically shown in Fig. 3. 

                                  
ei

ej

mji
cji

Eddy-j

Eddy-i

cluster molecule

 
 

Fig. 3. Transition of cluster cij from eddy-j to eddy-i leading to emission of 

molecule mij. 

 

Such a transition will be accompanied with emission of a “molecule” that will 

carry away the excess energy 
ji j i j i

h( )
    

          in harmony with Bohr 

[57] theory of atomic spectra.  Therefore, the reason for the quantum nature of 

“molecular” energy spectra in equilibrium isotropic turbulent fields is that 

transitions must occur between eddies whose energy levels must satisfy the 
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criterion of stationarity imposed by Maxwell-Boltzmann distribution function 

[36].   

 The invariant conservation equations for an incompressible and irrotational 

 
  v   flow with the velocity potential 


  lead to the invariant Bernoulli 

equation [36] 

2
(ρ ) ( ρ )

p constant 0
t 2

   



 

   
    

 
 (5)  

Comparison of Eq. (5) with Hamilton-Jacobi equation [2] resulted in the 

introduction of the invariant action S ( , t) ρ
  

  x  and quantum mechanics 

wave function ( , t) S ( , t) ρ
   

     x x  to derive from Eq. (5) the invariant 

time-dependent Schrödinger equation [58, 36] 

2

2

o
i U 0

t 2m


 

  

 

 


  


  (6)  

It is therefore clear that the potential energy U


in Eq. (6) like pressure in Eq. 

(5) acts as Poincaré stress [59-61] and is responsible for stability of “particles” 

or de Broglie wave packet [36].  Since in the absence of spin, potential flow, a 

Bernoulli equation (5) can be derived for each statistical field shown in Fig. 1, 

leading to a corresponding Schrödinger equation (6), the entire hierarchy of 

statistical fields from cosmic to photonic scales is governed by quantum 

mechanics. At cosmic scale the wave function 
g
( , t) x  will correspond to 

Hartle-Hawking [62] wave function of the universe. The wave-particle duality of 

galaxies has been established by their observed quantized red shifts [63].  

5   Distribution of Spacings between Zeroes of Riemann Zeta 

Function 
 The scale invariant model of statistical mechanics (Fig. 1) also impacts 

analytical number theory and hence Hilbert’s number eight problem namely 

Riemann hypothesis.  Since Maxwell-Boltzmann speed distribution in Eq. (4) 

gives distribution of sizes of particle clusters, if expressed in dimensionless 

form it can also be viewed as distribution of sizes of “clusters of numbers” or 

Hilbert “condensations”. Therefore, a recent study [35] was focused on possible 

connections between the result in Eq. (4) and the theoretical findings of 

Montgomery [64] and Odlyzko [65] on analytical number theory and what is 

known as Montgomery-Odlyzko  law  [64-65]
  
 

 
“The distribution of the spacings between successive non-trivial zeroes of the 

Riemann zeta function (suitably normalized) is statistically identical with the 

distribution of eigenvalue spacings in a GUE operator” 
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The pair correlation of Montgomery [64] was subsequently recognized by 

Dyson to correspond to that between the energy levels of heavy elements [66-

67] and thus to the pair correlations between eigenvalues of Hermitian matrices 

[68].  Hence, a connection was established between quantum mechanics on the 

one hand and quantum chaos [69]
 
on the other hand.  However, the exact nature 

of the connections between these seemingly diverse fields of quantum 

mechanics, random matrices, and Riemann hypothesis [66-67] is yet to be 

understood. 

 When particle speeds (cluster sizes) in Eq. (4) are normalized through 

division by the most probable speed (the most probable cluster size) one arrives 

at normalized Maxwell-Boltzmann (NMB) distribution function [35] 

j j

2
2[(2/ ) ]jx

x8 /  (2 / )( ) [ ]  e






  

   (7)  

The additional division by the “measure” 
β

π 2/ in Eq. (7) is for coordinate 

normalization discussed in [35] and shown in Fig. 5. Direct comparisons 

between Eq. (7) and the normalized spacings between the zeroes of Riemann 

zeta function and the eigenvalues of GUE calculated by Odlyzko [65] are shown 

in Fig. 4. Therefore, a definite connection has been established between analytic 

number theory, the kinetic theory of ideal gas, and the normalized spacings 

between energy levels in quantum mechanics [35]. 

 If one considers in the spirit of Pythagoras and Plato that pure “numbers” 

are the basis of all that is physically “real”, then these “atomic” prime numbers 

applied to construct p-adic statistical field and their associated p-adic matrices 

[35] may lie at the foundation of Riemann hypothesis in harmony with 

noncommutative geometry [70]. That is, when the physical space or Casimir 

vacuum [37] is itself identified as a fluid governed by a statistical field [35, 36], 

it will have an energy spectrum given by Schrödinger equation (6) of quantum 

mechanics that in view of Heisenberg [71] matrix mechanics will be described 

by noncommutative geometry [70].   
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Fig. 4. Probability density of normalized spacings between zeroes n of 

Riemann zeta function 
12 12

n  


    [65], normalized spacings between 

eigenvalues of GUE [65], and the NMB distribution in Eq. (7). 
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Although the exact connection between noncommutative geometry and 

Riemann hypothesis is yet to be understood according to Connes [70] 

 

“The process of verification can be very painful: one’s terribly afraid of being 

wrong…it involves the most anxiety, for one never knows if one’s intuition is 

right- a bit as in dreams, where intuition very often proves mistaken” 

 

the ideas suggested above and further described in [35] may help in the 

construction of the physical foundation of such a mathematical theory. 

 

6  Quantum Nature of Space, Time, and Dimension 
 

 The application of scale invariant model of statistical mechanics to the 

problems of infinitesimals and nonstandard analysis [72-75] resulted in the 

introduction of logarithmic coordinates and definition of “dimensionless” or 

“measureless” numbers  as [76] 

 

x x /
      (8)  

The “measure” / 2


   was chosen [76] due to Gauss’s error function on 

account of the equilibrium, i.e. random, distribution of particles (Fig. 1).  

According to Eq. (8) the range ( 1 ,1 )
 

  of the outer coordinate x will 

correspond to the range 
1 1

( , )
 

   of the inner coordinate 1x   leading to 

the coordinate hierarchy schematically shown in Fig. 5.   
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 = 
2  - 1

 
 
Fig. 5. Hierarchy of normalized coordinates for cascades of embedded 

statistical fields [76]. 

 

 Following the classical methods [77-78] for systems of embedded statistical 

fields (Fig. 1) the logarithmic coordinate (Fig. 5) resulted in definition of 

invariant fractal dimension as [76] 
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AS 1 AS 1

1 ES 1 AE

AE 1 1

ln N ln N
N N

ln N ln r
D

 

  

 

      (9)  

where
ES 1

N


and 
AS 1

N


 are the number of elements and atoms in the system, 

AE 1
N


 is the number of atoms in element, and 1r  is the size of the coarse–

graining.  Hence, dimension of physical space is identified as the number of 

embedded elements within its atom.  Each (atom) decompactifies into 
ES 1

N


 

independent (elements) that constitute D dimensions along which (atoms) 

i.e. numbers could be placed similar to Cartesian coordinates (x, y, z).  One 

notes that such “space” dimension D will be energy dependent and since 

number of elements in each “atom” could be very large, fractal dimension of 

typical statistical field shown in Fig. 1 could be very large
7

10  [79].  

 Invariant definitions for (system, element, atom) lengths (L ), ,
  
 and 

velocities ( , , )
  

w v u  lead to invariant definitions of (system, element, atom)  

"time" ( , , t ) (L , , )/ w / v / u
            [36]. The instant, “now”, or 

atomic time t 0
 
  of scale will have a finite duration 

1
t
 

  on a clock at 

the lower scale 1 [36] leading to the following hierarchies of time elements 

for the statistical fields shown in Fig. 1. 

e c m s k...       ...           (10)  

Clearly, the most fundamental and universal physical time is the time associated 

with the tachyon fluctuations k tt    [76] of Casimir vacuum [37]. Recently 

[32] Kelvin absolute temperature scale [degrees K] was identified as a length 

scale [meter] and related to particle de Broglie wavelength
2 1/2

T
 
   .  Also, 

statistical time durations or periods are related to frequency
2 1/ 2


   .  Since 

particle energy is 
2 2 2

m m v kT
             it is clear that the 

connections between space and time and hence relativistic effects are causal 

[36, 50-52] and governed by thermodynamics [32, 48, 80] in accordance with 

Poincaré-Lorentz dynamic theory of relativity described in Section 3. 

 

7  Concluding Remarks 
 

 If the signature of a good physical theory is its harmony with prior existing 

theories and empirical observations, then the scale invariant statistical theory of 

fields presented herein has been successful in satisfactory descriptions of 

relativistic effects, physical foundations of quantum mechanics, distribution of 
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spacing of zeroes of Riemann zeta function, and quantum nature of both space 

and time hence justifying further development of the theory in all these areas.   
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