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Abstract: Responses of the nonlinear resonant medium represented by set oscillators 

with various types of nonlinearity are investigated. Solutions of the nonlinear equations 

of oscillator in the form of final Volterra series in the time and frequency domains, 

corresponding to anharmonicity are received.  Integral transformation of input signals 

responses’ character is displayed. Both the duality of mediums under consideration as 

well as classical nonlinear circuits and the opportunity of realization of signals real time 

processing in those mediums attention is paid to. 
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1    Introduction 

 

Due to the time-frequency dualism nonlinear resonant (NRM) medium makes 

possible to calculate integral transformations of the convolution type in 

frequency space with the same connectivity as multiplication in time space.  

In this case nonlinear effects will lead not to frequency mixing resulting in 

generation of oscillations with combinational frequencies, but to time mixing, 

i.e. to generation of signals (pulses) at combinational instants of time [1, 3]. This 

time-frequency dualism phenomenon is illustrated by fig. 1. 

 

Fig. 1. Responses of nonlinear 

systems to multisignal excitation: 

above – responses of the nonlinear 

circuit to a series of harmonic 

excitations, below – responses of the 

nonlinear resonant medium to the 

excitation in the form of delta 

functions. 

 

The time positions of responses are as rigidly connected to the time position of 

excitation pulses in nonlinear frequency space as combinational frequencies 

arising in a nonlinear circuit are connected to the excitation frequencies. 



L. A. Rassvetalov 486 

Let us define the resonant medium as a set of high-Q oscillators, resonating in a 

frequency band. Such representation depicts the medium’s local heterogeneity. 

The term "oscillator" here covers such concepts as separate micro particles or 

medium collective excitations – quasi-particles – under quantum-mechanical 

consideration, and as molecules or even the macroscopical particles carrying all 

properties of the substance - at the classical approach. In such a model the 

nonlinear properties of the medium can be provided both by the interaction of 

external excitation with a separate oscillator, and by the interaction between 

separate excited oscillators and thus reduced to the following types 

�   Anharmonicity; 

�   Nonlinear excitation; 

�   Nonlinear attenuation; 

�   Nonlinear interaction between oscillators. 

In the latter case it is required to resolve a problem of many particles for the 

description of the model while solving one-partial problem is sufficient for the 

first three kinds of nonlinearity. The medium’s response to the external 

excitation will be calculated by summing the responses of separate oscillators 

regarding with respect to their frequency distribution density g(ω). It is 

appropriate to mention here that the resonant medium represented by a set of 

oscillators is a real frequency space and it is convenient to describe it in terms of 

frequency representation. 

The response of such nonlinear resonant medium - echo - signal – is a result of 

in-phase summation of oscillations of the excited oscillators, therefore the term 

«phased echo» is frequently used for this signal definition. 

Specific physical and mathematical models distinguished by both the wide 

variety, and significant complexity are used in various type echo researches. In 

the applied perspective the theory of a spin echo [2] is most elaborated, still in 

this field the analysis is limited to small-signal approximation. The statistical 

analysis of the known physical and mathematical models of echo phenomenon 

in various media, not limited by the small-signal approximation framework, 

represents significant mathematical difficulties. The volume of such calculations 

even more increases due to the wide variety of specific physical mechanisms of 

echo – signals formation. 

The purpose of the given article is to elaborate a unified description of the echo 

phenomenon regardless of the specific physical mechanism of its formation, 

suitable for the analysis of EP operation constituting a part of various radio 

engineering systems affected by signals and interference of any intensity. The 

mechanisms of nonlinearity mentioned above have the peculiarities related to 

responses’ amplitude behavior and responses’ phase - exciting pulses’ phase 

dependence. The dependence of responses’ shape on the shape of excitation 

pulses is the same for all types of nonlinearity. Therefore one kind of 

nonlinearity, that is anharmonicity,  is considered in the given article.  

 

2 �RM model with anharmonic oscillators.   

Let us present the equation of the  i-th anharmonic oscillator as follows 
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Di yi (t) + Fi [yi (t)] = x (t),   (1) 

where x (t) - external excitation, 

2
2

02
2i i i

d d
D

dt dt
σ ω= + +  - linear 

operator, σi and ω0i -  loss characteristic and resonant frequency of linear 

approximation, correspondingly, yi(t) – response of the  i-th oscillator, 

( ) ( )
2

p
k

k

k

F y t a y t
=

=   ∑  is a polynomial of the p-th degree, ak - the constants 

including power constants and geometrical values. Later, due to the equity of all 

oscillators the index i will be omitted. To solve (1) let us pass to the integral 

relation (2) 

( ) ( ) ( ) ( ) ( )
0 0

T T

t t

y t h x t d h F y t dτ τ τ τ τ τ= − − −  ∫ ∫  (2) 

where  ( ) { }
1

0
2

j t d
h F y e

ω ω
τ

π

∞
−

=   ∫  -  (3) 

pulse function of the linear part of (1), [F {⋅}]
-1

 – inverse Fourier transform. 

Substituting specific operator D in (3) we will have 

( ) 0

1
sin ,      0,

0,                            0,

ee
h

στ ω τ τ
ωτ

τ

− >
= 

 ≤

 (4) 

where  2 2

0 0eω ω σ ω= − ≈ . 

The solution of (2) will be found by the iterative method that results in 

the representation of  y (t) in the form of  Volterra finite series in case of weak 

nonlinearity (ak <<1, k = 2, 3, …, p): 

( ) ( ) ( )1

1 1

,...,
p

pn

p p p i i

p iE

y t h h x t dτ τ τ τ
= =

= + −∑ ∏∫ ,   (5) 

where E
p
 - p-dimensional Euclidean space, in which Volterra kernels hp (τ1, τ2, 

…, τp), representing pulse functions of nonlinear transformation of the p-th 

order are determined. So, for example, 

( ) ( ) ( ) ( )1 2 1 2

2 1 2

,   ,  0,
,

0   for all other values .

h h h d
h

τ τ τ τ τ τ τ τ
τ τ

τ

∞

−∞


− − ≥

= 



∫  

Outside the framework of the simple model of the isotropic medium 

without space nonlocal coupling considered  above,  y (t) and x (t-ti) in (4) 
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should be vectors, and hp(τ1,…,τp) – tensor of the p + 1-th rank, having such 

values  as charges, masses, geometrical and power constants, as well as values 

characterizing  dissipation of energy as constants. This more general case which 

doesn’t lead to any change of the final conclusions is not considered here. 

However, transition to this case is quite obvious. 

Find the explicit form of the third order Volterra kernel 

( ) ( ) ( ) ( ) ( )
1

3 1 2 3 1 2 3, ,
E

h h h h h dτ τ τ τ τ τ τ τ τ τ τ= − − −∫  

The area of integration corresponding to a causal kernel, is shown as 

shaded in fig. 2, according to which 

( ) ( ) ( ) ( ) ( )
1 2 3min{ , , }

3 1 2 3 1 2 3

0

, ,h h h h h d

τ τ τ

τ τ τ τ τ τ τ τ τ τ τ= − − −∫
 

 

Fig. 2. The area of integration corresponding to a causal kernel. 

 

Let a = min {τ1,τ2,τ3}. Taking (1.2.4) into account we have 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 2

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, , 1

16

cos cos cos ;

a

e

e e e

h e e
σ τ τ τ στ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + += − − ×

− − + + − + − +  

 

Under condition of ωe>> σ  the terms having the factor 
51/16 eω  are rejected 

here.  

Thus: 

if min{τ1,τ2,τ3} = τ1 then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − − + + = − × 

− − + + − + − +  

(6) 

τ3 τ2 τ1 0 

1 

τ 

h(τ ) h(τ1 - τ ) h(τ2 - τ ) h(τ3 - τ ) 
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2) if min{τ1,τ2,τ3} = τ3 then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − + − = − × 

− − + + − + − +  
3) if min{τ1,τ2,τ3} = τ2  then 

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1 2 3

3 1 2 3 4

1 2 3 1 2 3 1 2 3

1
, ,

16

cos cos cos ;

e

e e e

h e e
σ τ τ τ σ τ τ ττ τ τ

σω

ω τ τ τ ω τ τ τ ω τ τ τ

− + + − − + = − × 

− − + + − + − +  

 

Another way to write the third order kernel is following below: 

( ) ( ) ( ) ( ) ( )
{ }

( ) ( )

1 2 3

1 2 3 1 2 3

3 1 2 3 1 2 3

max , ,

3

4

, , ,

1
,

16

t

t t

e

h t h t h t h t h t d

e e

τ τ τ

σ τ τ τ σ τ τ τ

τ τ τ τ τ τ τ τ

θ
σω

− − − − − + − −

= − − − − =

 − 

∫

if τ1 = max{τ1,τ2,τ3}; 

( ) ( ) ( )1 2 3 1 2 33

3 1 2 3 4

1
, , , ,

16

t t

e

h t e e
σ τ τ τ σ τ τ ττ τ τ θ

σω
− − − − − − + − = −   

if τ2 = max{τ1,τ2,τ3}; 

( ) ( ) ( )1 2 3 1 2 33

3 1 2 3 4

1
, , , ,

16

t t

e

h t e e
σ τ τ τ σ τ τ ττ τ τ θ

σω
− − − − − − − + = −      (7) 

if τ3 = max{τ1,τ2,τ3}; 

Here θ = ( ) ( ) ( )1 2 3 1 2 3 1 2 3cos cos cose e et t tω τ τ τ ω τ τ τ ω τ τ τ+ − − + − + − + − − + , 

Find the oscillator respond to an excitation in the form of three δ-functions (fig. 

3, at t1 = 0): 

x(t) = c1δ(t) + c2δ(t-t2) + c3δ(t-t3) 

 

Fig. 3. Three-pulse excitation. 

t 

t2 t3 0 
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In the third approximation of the solution we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

{ }

( ) ( ) { }
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1 3

1 1 2 3

2 1 2 3

3 1
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,0, , , , 0,
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=

=
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=
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+ +  

+  

∏∫ ∫

{ }

( ) { } ( ) { }

( ) { }

2 3

2 3 1 2 3 1 3 1 2 3

1 2 1 2 3

,

2

3 1 2 3 2 2 3 2 2, max , , , max , ,

3 2 2 , max , ,

}

[ ,0, , , , 0,

, , ,0 ] ...

a c c h t t t h t t t

h t t t

τ

τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ

= =

=

−

+ +

+

 

Here the first three terms correspond to the response of a linear circuit with 

the pulse characteristic h (t) and are not of interest from the echo – phenomena 

point of view. The expression in the first curly brackets defines the three-pulse 

response 
( )123

3y , arising at the  instant of time t = t2 + t3 (the top index 

corresponds to the numbers of stimulating pulses): 

( ) ( ) ( ) ( )2 3 2 33123 3 1 2 3
3 2 34

6
cos

16

t t t t t t

e

e

a c c c
y e e t t t

σ σ ω
σω

− − − − − + = − − −   

 

At the instant of time t = t2 + t3 all oscillators oscillate in the same phase and 

produce the pulse with the amplitude 

( ) ( ) ( ) ( )3 2 2 2
2123 2 2

3 2 3 3 1 2 3

3
1

8

t t t ty t t a c c c e e e
σ σ σ− − − −+ = −  

The last terms in square brackets describe a two-pulse echo 
( )12

3y  from the first 

two pulses: 

( ) ( ) ( ) ( )2

2
12 3 23 1 2

3 24

3
cos 2

8

t tt

e

e

a c c
y t e e t t

σσ ω
σω

− −− = − −   

 

There are two more echoes of two-pulse type from the second and third pulses 
( ) ( )23

3y t  and from the first and third pulses 
( ) ( )13

3y t  

A distinctive feature of the echo - signals provided by anharmonicity is growth 

of the echo amplitude as the delay t12 between the first and the second pulses of 

excitation first rises up to maximum and then almost exponentially recesses [4], 

fig. 4. 
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Fig. 4. Amplitude dependences of responses 

 

Research the response of the anharmonic oscillator system to the excitation of 

three finite signals of the optional form within the framework of the third 

approximation. 

 

The distinctive features associated with the record of the transformation kernel 

for various combinations of min {τ1,τ2,τ3} and max {τ1,τ2,τ3} will be shown in 

this calculation ,   as well as rules of calculating Volterra functionals stated. 

The solution of the basic equation to a third approximation contains the first and 

third order functionals: 

 

( ) ( ) ( ) ( ) ( )∫ ∏∫
=

−=
31

3

1

321333 ,,,,
E r

rr

E

dxthadxthty ττττττττ , (8) 

 among which only last one contains echo – responses . 

As the all oscillators system response is of interest it should be specified that the 

solution (8) corresponds to the oscillator with the resonant frequency ωe.  

Omitting a linear functional, we have:  

 

( ) ( ) ( )
3

3 3 3 1 2 3

1

, , , ,
e r r

rE

y t a h t x dω τ τ τ τ τ
=

= − ∏∫ , (9) 

 

The total system response in view of a frequency distribution density is as 

follows : ( ) ( ) ( )3 3 , e ey t g y t dω ω ω
∞

−∞

= ∫  

e
-σt

12 1-e
-σt

12 

e
-σt

12(1 - e
-σt

12) 

1 

t 

0 



L. A. Rassvetalov 492 

First find the three-pulse echo expression provided by the product of all three 

input pulses in (9). For this purpose we write of all terms resulting from the 

opening the brackets in the product  

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( ) ( ) ( )[ ],

)(

333231

232221131211

3

1

Txxx

TxxxTxxxx
r
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−+−+

×−+−+−+−+=∏
=

ττττ

τττττττττ

 
 
those which are of interest for us   

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ...

)(...

132231231231

133221331221

233211131211

3

1

+−−+−−

+−−+−+−

+−−+−−+=∏
=
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r

ττττττττ

ττττττττ

τττττττττ

 (10) 

We notice that for the first term in (10) τ3 = max{τ1,τ2,τ3}, and τ1 = 

min{τ1,τ2,τ3}. Consequently, the kernel (7) should be used with the first term. In 

this kernel we should take that one of the three cosines in whose argument 

min{τ1,τ2,τ3} has a sign "plus", i.e. cosω(t+τ1-τ2-τ3). Thus, the transformation 

kernel for the first term (10) x1(τ1)x2(τ2-τ)x3(τ3-τ) is 

 

( ) ( )
( )

( ) ( ) ( )

3 1 2 3

1 1 2 3

1 2 3 1 2 3

| max , ,3 1 2 3 4
| min , ,

3

1 2 3

1
, , ,

16

cos

e

t t

h t

e e t

τ τ τ τ
τ τ τ τ

σ τ τ τ σ τ τ τ

τ τ τ
σω

τ τ τ

=
=

− − − − − − − +

= ×

 − + − − 

 (11) 

The other terms’ kernels should be found in the same way. For example, in the 

fourth term τ1 = max{τ1,τ2,τ3},  and  τ2 = min{τ1,τ2,τ3}. This term’s kernel is 

 

( ) ( )
( )

( ) ( ) ( )

1 1 2 3

2 1 2 3

1 2 3 1 2 3

| max , ,3 1 2 3 4
| min , ,

3

1 2 3

1
, , ,

16

cos

e

t t

h t

e e t

τ τ τ τ
τ τ τ τ

σ τ τ τ σ τ τ τ

τ τ τ
σω

τ τ τ

=
=

− − − − − + − −

= ×

 − − + − 

 (12) 

As for the physical model under consideration Volterra kernels are symmetric 

the appropriate replacement of arguments in the terms (10) and in the 

corresponding kernels will reduce both all the terms and kernels to one. Indeed, 

the consequent change τ1 ↔ τ3,  τ2 ↔ τ1 reduces the kernel (12) to the kernel 

(10). Such arguments replacement simultaneously reduces the fourth term to the 

first one. 

Thus, the property of kernels symmetry appears to be rather useful and should 

be applied when possible in order to minimize rather bulky calculations of 

Volterra functionals.  

All the terms in expression (10) are reduced to the same type, therefore 

(9) transforms in: 
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( ) ( ) ( )
( )

( ) ( ) ( ) 321332211

,,min|
,,max|

321333
3

3211

3213,,,6,

τττττττ

τττω
ττττ
ττττ

dddTxxx

thaty
E

−−

×−= ∫ =
=

 

 

In this case it appears simpler to calculate all oscillators system response than 

that of one oscillator due to possibility of using spectral densities of the input 

signals:  

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

1

2

3 3

1 1 1
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2 å
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τ
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ω τ τ

τ τ

τ τ τ τ ω

∞
+−

−∞

− −

− +

 
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 
 
 

= × 
 
   −    

∫ ∫

∫

∫ ∫

  (13) 

4

3
6 /16

e
c a σω= . 

Internal integrals (13) represent spectral density of the input signals multiplied 

by the exponents exp (±στi). Introducing definitions 

 

( ) ( ) ( )

( ) ( ) ( )

'

t

'

* t

,e

e

z

j tt z j

i e i i e

z

z

j tt z j

i e i i e

z

S x t e e dt S e e

S x t e e dt S e e

ωσ σ ω
σ σ

ωσ σ ω
σ σ

ω ω

ω ω

−± ± −
± ±

± ±
± ±

= =

= =

∫

∫

%

%

, 

where ( )i eS σ ω±
%  - spectral density of the signal xi(t)e

±σ t
  whose rise-up portion 

coincides with the time zero, we can write (13) as follows 

( ) ( ) ( )

( ) ( ) ( )[ ] ( ) ( ) },~~

~
)(

~
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3
Re

2

33
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*

11
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ωωω
σ

τωτσσ
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σ
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deeeSeS

SSg
a

ty

TtjtTtT −−−−−−−
−

∞

∞−

−

×




= ∫
 

where g1(ω) = g(ω)/ω4
. 

As entrance signals duration is supposed to be negligible with reference to the 

decay time constant of the oscillators (ti <<1/s, i = 1, 2, 3), one can consider the 

approximate equality i iS Sσ σ−≈% %  valid. Then 
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( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( ) .
~~~

1
8

3
Re

32

*
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2T3
3





×−

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∫
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∞−
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σ

τω
σσσ

στσ
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a
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 (14) 

It follows from the last expression that the three-pulse echo signal form is 

defined by the product of spectral densities of the entrance signals, the spectrum 

of the first signal should be taken in a complex conjugated form.  Composed of 

exponents factor at the integral sign determines the dependence of the three-

pulse echo- signal amplitude on the entrance signals time positions. The echo - 

signal clusters about the moment of time t = T+τ. 
(14) can be written in the other form 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ),1
8

3
3211

23
3 Ttxtxtxtgee

a
ty TtTt −∗−⊗∗−= −−+−−

σσσ
στσ τ

σ
 

where symbol * means convolution, and ⊗ - correlation. 

Introducing multidimensional Fourier transforms of Volterra kernels instead of 

Volterra kernels themselves we can pass to the frequency representation for y(t) 

( ) ( ) ( )∫ ∫
∞

++−
∞

=
0

1

...

0

11 ,,...,...,...,..., 11

n

j

nnnn ddehK nn ττττωω τωτω
, (15) 

( ) ( ) ( ) 0

1

1 10 0

1
... ,...,

2

pn
j t

p p k kp
p k

y t K S e d
ωω ω ω ω

∞ ∞

= =

= ∑ ∏∫ ∫ , (16) 

where S (ω) - spectral density of excitation x (t) which use is determined by the 

assumed pulse character of x (t). The reduced form of the record used in [5] is 

done in (16). In this record the total number of terms in the subintegral 

expression is equal to 0 1( ... ) 2 ,  where p p k

p p p pC C C C+ + + =  - number of 

combinations of p elements over k, containing k "minus" signs in the arguments  

of a gain. The first term in (16) describes signal x (t) transmission through the 

linear quadripole with the gain K1(ω), the others depict nonlinear signal 

transformation. The gain characteristics (16) are presented in [5].  

If the frequencies in the gain arguments are not equal, i.e. ω1 ≠ ω2 ≠…≠ωp, the 

ratio (16) describes occurrence of the new spectral components with frequencies 

±ω1±…±ωk±…±ωp, passing through filters with the gain Kp(ω1,…, ωk,…, ωp). 

Assuming the Q-quality of oscillators to be high it is possible to consider 

Kp(ω1,…, ωk,…, ωp) = 0 at ω1 ≠…≠ ωk ≠…≠ωp. To exclude the highest 

harmonics of the signal the number of "plus" and "minus" signs in argument Kp 

should differ by unit. Such integrated transformation kernel in (16) is called a 

kernel with sum - differential argument in [5]. In this case 
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where c.c. - is a complex conjugate part of the expression presented above. The 

reduced form of the record is also applied here. Thus, for example,   total 

description (17) of the second term of the series looks like this: 
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The block diagram of the device providing transformation (17) with all 

oscillators taken into account is shown in fig. 5. Filters Φi(ω), i = 1, 2, …, m, 

m=N, select spectral bands of a signal with a bandwidth ∆ωi; output  oscillations 

of these filters are subject to instantaneous nonlinear transformation in nonlinear 

blocks with instantaneous characteristics 2 1

2 1 ,   1, 2,..., ,k

ka k nξ −
− =  linear filters 

( ) ( )2 1

i

kK ω−
 select the first spectral bands of the transformed oscillations, adders 

make linear summation of all output oscillations. 

  

Fig. 5. The block diagram of the device making transformation (17). 
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The minimal order of nonlinearity in the equation (1) providing echo 

phenomena equals to three. This is the cubic medium and it can be represented 

by the radio engineering equivalent shown in Fig. 6. Putting aside thin 

distinctions of higher order echo time relations we can substantially simplify the 

block diagram transforming it as shown in Fig. 7.  

 

 
 
Fig. 6 

 

 
 
Fig. 7 

We find the explicit form of the third order gain K3(-ω,ω,ω) using the 

appropriate Volterra functional kernel (6): 
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Considering only positive frequencies domain and taking into account, that σ>> 

1, we write K3 (-ω,ω,ω) in the following form 
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Correction resulted from the summation of the conjugated factors in the square 

brackets, has the maximal value (1 + 1/s) at ω - ω0 = 0 and, thus, 
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1
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j
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σ ω ω
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as shown in fig. 7. 

Let us find the whole oscillator system response to the signal x (t): 
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the total resonant characteristic of the oscillator system, function g(ω) has the 

meaning of  the oscillator frequency distribution density. The first term of 

expression (18) describes linear transmission of the signal x(t) through the filter 

with the gain ( )g jω′ ; the second one corresponds to the nonlinear 

transformation of the third order and rather adequately characterizes the 

processes occurring in the nonlinear resonant medium: 
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The spectral density of the output signal corresponding to this transformation 

defines possible responses of medium. 

In time domain the medium response to the excitation x (t), determined by the 

second approximation of the basic medium equation solution, can be presented  

according to (20) in the form, where ( )g t′  - the pulse characteristic of the 

system with the gain ( )g jω′ . 
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The last expression determines functional capabilities of the devices which can 

use NRM properties, i.e. producing convolution, signal correlation function and 

Fourier transforms in real time.  
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