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Abstract: The purpose of our work is study an oscillating system and an electro-dynamical 
transducer, which are driven either by the amplifier or wave field. In the first case an 

amplifier is considered as a self-exciting system with a limited power. Electrical current 

produced by it is converted by the transducer into mechanical force, which leads to 

vibrations of the base. A mechanical oscillator is mounted on the transducer base. The 
influence of oscillator vibrations on the formation of the driving force leads to a number 

of specific effects, in particular, to the Sommerfeld –Kononenko’s effect. New nonlinear 

effects in the coupled shaker–oscillator system are studied in details. Steady-state regimes 

of the constructed model are investigated by methods of the theory of dynamical systems. 
Expressions for supplied and consumed powers are shown and investigated for regular and 

chaotic regimes. The inverse problem model is also discussed. The classical results for 

wave power absorption by wave energy extractor as a single degree of freedom system are 

presented in the second considered problem. The example includes an axisymmetric buoy 
which oscillates and is subjected to its natural hydrostatic restoring force. Main attention 

is focuses on the values and expressions for the mean powers. The expression for the 

maximum mean power is given for the considering system.  

Keywords: Sommerfeld – Kononenko effect, steady–state regimes, energy extractor.  

 

1 Introduction 

 
The coupling effect between an excitation machine and vibrational loads was 

firstly found and found experimentally studied by Sommerfeld [1]. And it is a 

universal phenomenon and a manifestation of the law of conservation of energy.  

A complete theoretical study of the Sommerfeld effect has been given in the works 

of Kononenko [2], so that we call these phenomena as Sommerfeld-Kononenko’s 

effect [3 - 7]. As shown by Kononenko  for a linear oscillator  with a limited  

excitation   characteristics  of a  nonlinear oscillator arise,  such  as the occurrence  

of  instability  regions. Kononenko works presented the methodology of solving 

the problems of interaction between oscillation systems and their excitation 

mechanisms, introduced the main definitions and clear terminology, and solved 

the basic problems. A review article of Ganiev and Krasnopolskaya [3], dedicated 

to the 100th birthday of Kononenko, gives a fairly complete description of all the 
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scientific fields [8 - 11] that explore the effect of limited excitation. 

 In the  present  study some new energy characteristics  are investigated for  an 

oscillator with damping and an electro-dynamical transducer, which are driven by 

the amplifier of limited power. For the first time a direct and reverse problems of 

excitation of an oscillating system are studied using the same machinery 

mechanism. For the direct excitation of the system a shaker which consists of an 

electro-dynamical transducer, which are driven by the amplifier is considered. 

And for the reverse problem a wave field influence on the system is studied. 

Presence of both direct and feedback interactions between the oscillator and the 

shaker is main goal of our modelling and study in present paper. The mutual 

influence between an oscillating system and the mechanism of its excitation, 

when the latter has limited power, gives rise to a number of unusual phenomena 

in their behaviour [12 - 15]. The effects of the interaction of an electro-dynamic 

shaker powered by a vacuum-tube amplifier of limited power, and a linear 

oscillator which affects the amplitude and frequency of the driving force, are 

studied in this paper. 

 

2 The Model  

 
Let us consider an oscillator with damping, mounted on the base of a shaker 

which undergoes displacements ( )w t  (Fig. 1). The equation of vibrations of the 

oscillator of mass m with the vibrational resistance coefficient 
0  has the 

following form  

mx x cx mw                                                                 (1) 

The base of the shaker has a displacement ( )w t  as a result of the action of the 

force 
0 0H i  [16, 17] applied to the coil 1,L which is rigidly attached to the base. 

The quantity 0H  is a constant characterizing the electromagnetic field of the 

vibrator; 0i  is the current of the shaker circuit. The law of motion of the centre of 

mass of the coil with the base (their mass is 
1m ) and the oscillating system may 

be written in the form  

 1 0 0( )m w m w x H i  
                                                            (2) 

The current of the shaker is related to the amplifier current 
2 3( )i i and the 

displacement ( )w t  by the differential relationship as shown by Kononenko and 

Krasnopolskaya in [16]  

0 2 3
0 1 0

( )
( ) 0

di d i i dw
L L M H

dt dt dt


   

                                           (3) 

Suppose that the tube operates under conditions when the anodic current equals 

[16, 17] 
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3

0 1 3( ) ( )a g a g ai a a e De a e De    
                                           (4) 

where ge  is the tube grid voltage; ae is the anodic voltage; D  is the penetration 

factor of the tube; and   is a small positive parameter.  

Applying the method of contour currents, we can write the following Kirchhoff’s 

equations for each branch of the generator current: 

1 2 3 ,ai i i i  
 1,a a ae E R i 

   

2
2 3

1
,c c

c

di
L R i i dt

dt C
  

 2
2 ,a c c

di
e L R i

dt
    

2 .c c c

di
e E M

dt
    

  

 
Figure 1.   Fig.1.  Schema of a shaker with a generator interacting with an oscillator. 

 

After setting up these Kirchhoff's equation for each branch of the amplifier 

current, let us reduce them to one equation with respect to a new variable 

 u t  ( )dt g ge E   (
gE is the constant component of the voltage 

ge ). We 

retain only terms of the first order of smallness. Here we assume that

  2

0 1 1 2 0 3L  M / L   L   ,  D  ,  H          
. Selecting the slope of the 

tube characteristic in (4), 1a  in accordance with the equation of amplitude 

balance, we assume it to be equal to  

 1       0 .
( )

c a a c

a c c

R R C L
a a a

R M DL
 


  


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With this value of 1a  we obtain the following nonlinear equation for the function 

u(t)  

    

2
2

02

a c c c

c c a c c c c

E M M Md u du
u a a

L C R L C L C dtdt
 

 
     

   
32

1 32

c c c
g

a c a c c c c

R R du M du
a u a E x

R L R L C dt L C dt


  

   
       

                                
(5) 

 

Here  

2 a c

c c a

R R

L C R





; 
3

0 1 1( )( )

c

c c a

MM m

L C R L L m m
 

 
 

The tube obtains energy from the energy sources aE  and gE , which are 

batteries of the supply voltage. We assume the batteries are non-ideal sources of 

energy [2], since the output voltage E  of the battery depends on the current i  

flowing through the load (of the tube oscillator, in this case), according to the 

external characteristic [16, 17], which is given approximately by 
ocE  E  ri   

(
ocE   is the open-circuit voltage; r  is a quantity equivalent to the battery 

resistance). Neglecting the grid current, we assume 
g ocE   E .  By considering the 

equality of battery output voltage on a shunt of high capacitance 
aC  (assuming 

aC 1 /  ), we obtain the following relationship for the voltage Ea
:  

1 2( )e

a oc

e

R du
E E r u t r

R r dt
 


  


                                                       (6) 

where eR  is the equivalent resistance (the sum of aR , the tube resistance, and 

r ); 
1r  and 

2r  are constants determined by the parameters of the tube oscillator 

and battery.  

Therefore, Ea
 is not a constant but depends on the variable function  u t .  This 

fact clearly must be reflected in the formulation of  u t .  After substituting (6) 

into (5), the components    a c c l 2M / R L C [ r u  r du / dt ]c    reflecting the 

non-ideal character of the energy source of the excitation mechanism, appear on 

the right side. Terms on the right side of equation (5) may be regarded as ‘internal 

forces’ and as the effect of interaction with the oscillator. Therefore, we write  

              

2
2

02
, ,

d u du du dx
u L u K u

dt dt dt dt
  

   
      

                           (7) 
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Here  u,  du / dtL  is the sum of the internal forces causing energy influx; 

 u,  du / dtK  is the sum of the internal resistance forces; 
0  is the frequency 

of the self-oscillation conditions of the unloaded excitation mechanism; i.e., 
0  

and amplitude 
0  are determined for the function 

0 0cosu t   from the self-os

cillation equation  
2

2

02
, , 0

d u du du
u L u K u

dt dt dt
 

   
      

     
We call the function  u,  du / dtL  the static characteristic of the energy source, 

since under stationary conditions   u,  du / dtL  opposes the energy loss 

 u,  du / dtK .  These functions have the following form: 

 

2
1 2

2

3

( , ) [( ) ]

3 ( ) ;

c c

a c c a c c

c
g

c c

du r M R du
L u a

dt R L C R L C dt

M du
a E

L C dt

  
 

   
 



 

2 3

3(u, ) 3 ( ) ;c
g

c c

du M du du
K a E

dt L C dt dt
 

 
  

                                                   (8) 

And the frequency 
0  could be determined from 

2
2 2 1 1
0 u u.c c

a c c a c

r M R

R L C R L

  
   

 
We should note that the non-ideal model of the shaker with amplifier (7) has 

principal possibility to influence on the frequency what is crucial for stability of 

the process of interaction [18]. 

Transforming equations. (1), (2), and (3) and expressing the current 2 3( )i i by 

 u t  enables us to define  

2
2

12

0

,
d x du dx

x u
dt dt dt


    


                                                      (9) 

where  
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2 1

1

1

( )
;

c m m

mm


 

 
3

1 0 1

;
( )

c

c a

HMR

m M R L L
 


 0

;a cR C





 

0 1

1

( )
.

m m

mm







 

Concluding, the system of equations (7) and (9) represents of the coupled shaker- 

oscillator model with non-ideal amplifier. 

 

 

3 Simulations 

 
Introducing the following dimensionless variables  

,
g

u

E


  ,

d

d


 


  1 ,

x
x

w
 1

1 ,
dx

x
d


0 ,t  

 
the system of equations  (7) and (9) can be written in the form: 

 

2 3
1 2 3 4

1

5 6 0 1 7 .

p

x p

p x p

 

        

     

 


     



                                          (10)                         

 

Where the coefficients are 

32
1 1 32

0

( ) 3 ;c c c
g

a c c c ca c c

M R Mr
a a E

R L C L CR L C


 

 
    
    

2 3
3 0

33 ; ;c c
g

c c c c

M M a
a E

L C L C
  



0

4 ;





0

5 2
;







0

6 3
;





 

0

7 ;





2

0

0
1
2

.





 
 

The system (10) is nonlinear, so we may study it numerically. The following 

values of variables and constants are used in our numerical simulations [3]: 
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700 ;gE V 2000 ;aE V 56.5 10 A/ V;a   160 ;aR   10 ;cR  

9 3
3 5.184 10 A/ V ;a X    0.015;D  0.094 ;cL H 100 ;L H 1 ;M H

0.275 ;cM H 1.0465 .cC mF  
Using these variables one may obtain the following coefficients for the system 

(10):  

 

0 0.995,   1 0.0535, 
 2 0.63 ,X   3 0.21 ,X   

4 0.5   5 0.0604,  
 6 0.12,   7 0.01,                                           (11) 

where X is the bifurcation parameter. 

The phase portraits of steady state solutions for the initial conditions 0.3  ,

0.2,  0.1x p  are shown in Figure 2.  The limit cycle graph is shown in 

Figure 2 a) and corresponds to regular regimes of oscillations [19] with 

periodically changing variables  and . Of course, the variables x and p are also 

regular and periodic in time. The phase portrait for chaotic regimes of interaction 

is presented in Figure 2 b).  

The spectrum in Figure 3 a) has discrete peaks. So that, this graph indicates that 

there is regular regimes in the system at X=1.0. With increasing value of X the 

transition to chaos occurs. Thus, at X=2.0 chaos is realized in the system, when 

the spectrum in Figure 3 b) is continuous [19]) and the projection of the phase 

portrait occupies some area in the phase space (Fig. 2 b)). 

 
(a)                                                                      (b) 

 

Fig. 2. Graphs of projection of the phase portrait at X=1 (a), X=2 (b) 
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                        (a)                                                                          (b) 

 

Fig. 3. Graphs of the power spectra at X=1 (a), X=2 (b) 

 

 

 

4 Supplied and Consumer Powers 

Power ratio is easy to obtain from the first integrals of the equations of motion, 

for which we multiply the first equation (7) on  du / dt , the second equation  by 

 dx / dt  and we add both equations. As the result we write 

 

2 2 2 2 2 2

0 1

0

[( ) ( ) ] [( ) ( ) ]
2 2

[ , , ]

[ ] .

d du d dx
u x

dt dt dt dt

du du dx du
L u K u

dt dt dt dt

du dx dx
u

dt dt dt

  


 

   

   
    

   

  


                                       (12) 

After integration in time on the left-hand side of the equation (12) the total energy 

E of the corresponding conservative system will be presented. The integral on the 

right-hand side of (12) expresses the sum of the supplied and consumed energies. 

For steady-state periodic solutions m makes forced oscillations, and the generator 

generates a periodic current. The energy of the conservative part of the system for 

steady-state periodic solutions is constant value when integration during the 

period of the solution. Therefore, the sum of powers of non-conservative part is a 

periodic function of time but integration of this function in period time is constant. 
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So that the supplied and consumed energies should compensate each other. We 

may write that the following expression for the powers 

0

[ , , ]

[ ]

du du dx du
L u K u

dt dt dt dt

du dx dx
u

dt dt dt

  


 

   
    

   

  


                                                        (13)                                                           

should be periodic function for the periodic solutions, quasi-periodic function for 

the quasi-periodic solutions and chaotic for the irregular steady-state regimes. For 

the two last regimes there is no constant time period integration the expression 

(13) during which gives the zero value.  

Using the dimensionless variables (10) the expression (13) for the total power P 

can be present in the form 
2 3

1 2 3 4

5 6 7

( )

( ) .

p

p p P

       

    

   

  
                                                             (14)        

The supplied power 1P  is equal to 

2 3
1 2 3 5 6 1( ) ( ) .p P                                                            (15) 

The consumed power 2P  could be presented as 

4 7 2( ) .p p P   
                                                                               (16) 

In Figure 4 the powers P , 1P  and 2P  are showed for the coefficients (11) and 

the same initial conditions as for in Figure 2 and 3 for the periodic solution at 

X=0.1. It is clear could be seen that 2P  is oscillating around the negative value (-

0.0796) and has amplitudes in order smaller than 1P , which is oscillating around 

the small positive value (0.0796). If we integrate the power 2P  over its largest 

period T, then the quantity will be negative as  
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(a)                                                 (b) 

 
(c) 

Fig. 4. Graphs of the powers at X=0.1 the total power P  (a), the supplied power 

1P  (b) and the consumed power 2P  (c). 

 

expected (-0.05T). The total power P has the mean value equals to   zero  and    a      

periodic behavior. If we integrate the total power over its longest period, then the 

integral gives a zero value (the same as the value of integral of left-hand side of 

equation (12).  

Behavior of powers for chaotic steady-state regimes is much complicated.  In 

Figure 5 the powers P , 1P  and 2P  are presented for the chaotic solution of the 

system (10) at X=3.5. For that case 2P  (Fig. 4 c)) is irregularly oscillating around 

the small negative value (-0.0051) and has amplitudes in order smaller than 1P , 

which is chaotically oscillating around the small positive value (0.0051). Thus, 

the total power P has the mean value equals to zero and a chaotic behavior in 

this case. There is no constant periods for chaotic regimes, so an integral value 

will have chaotic oscillations around zero value. 
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(a)                                                 (b) 

 

 
(c) 

Fig. 5. Graphs of the powers at X=3.5 the total power P  (a), the supplied 

power 1P  (b)  and the consumed power 2P  (c) 
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5 The Wave Energy Converter (The Inverse Problem) 

 
Fig. 6. Generation of electric current by fluid wave field 

 

Let us consider the inverse problem: generation of electric current by fluid wave 

field. We build the most simple a wave energy converter, so called WEC. Let’s 

the base with a coil 1,L  and a magnetic field is immersed in fluid with wave 

motion. Then the motion of the base with a coil 1L  ( )w t  excites an electric 

current according Lorenz law. This current is related to the displacement ( )w t  

by the differential relationship [16, 17] 

0
0 0( ) 0;

di dw
L H

dt dt
 

                                                                             (17)   

The quantity 0H  is a constant characterizing the electromagnetic field; 0i  is the 

exciting current of the circuit. 

The law of motion of the centre of mass of the coil with the base (their mass is 

1m ) may be written in the form  

1 0 0.( ) w Bw Cw Fsm m H i    
                                                           (18) 

Where m is the added mass of the fluid wave motion; B is a radiation damping 

coefficient; C is a constant arising from any restoring force [20]. And the Ampère 

force  0 0H i  [15, 16] applied to the coil 1L which is rigidly attached to the base.  

And Fs
 is the excitation force owing to the fluid waves on the device [20].  For 

simplicity of analysis we assume that the Ampère force  0 0H i  is negligible small 

as compared with the excitation force Fs
. We may omit it. 
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A power of the considering system could be derived by multiplying the equation 

(18) by w  and putting  the conservative terms in the left hand side of the equation, 

others in the right hand side. As a result we have 

2 2

1

[( ) (w) ] (F )
2

s

d dw C dw dw
B

dt dt m m dt dt
  


                                          (19) 

We may rewrite the right hand side of the equation presenting the supplied and 

consumed powers as 
2

2

W (F ) ;
4 2

s s
s

dw dw F dw F
B B

dt dt B dt B

 
     

                                            (20)     

Therefore the maximum power is 
2

maxW
4

sF

B


                                                                                                  (21) 

If Fs
 is the excitation force owing to the fluid waves on the device then Fs

 and w 

are oscillating function in time. Let us assume they are periodical in time. The 

mean power 
*W , generated by the fluid waves on the device is the time averaged 

over a period time. So that 

* * * *1
W (F ) .

2
s Bw w                                                                                (22) 

Where *F s
 is the amplitude of Fs

and 
*w  is that amplitude of w  which is in 

phased with Fs
[20 -24]. Now  

*2
*

maxW
8

sF

B


                                                                                               (23) 

This formula represents the classical result initially obtained by D.Evans, J. 

Newman and C. Mei in 1976 [21, 22, 24]. 

6. Conclusions  

In this paper, the coupled generetor-oscillator model, which takes into account 

both direct and reverse influence of subsystems, is worked out. The methods of 

modern theory of the dynamical systems are used to study the laws of the steady-

state regimes of a complex model with strong interaction. The chaotic regimes 

are found. Found irregularities of phase trajectories of the complex model are seen 

to depend on intensity of the amplifier tube. The total power, the supplied power 

and the consumed power are defined and calculated for the periodic and chaotic 

steady-state regimes. It is shown that the total power is oscillating along the mean 

value of zero,   when the consumed power was around a negative and the supplied 

power around a small positive value. 
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In the inverse problem the classical linearized water wave theory is used to 

develop expressions for the power absorption for a particular power take-off 

mechanism and the maximum theoretical power absorption. The advantage of our 

approach is that we find the powers as a function of time, and not just the averaged 

quantities. Additionally, we can calculate them for any regular or chaotic regimes. 
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