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Abstract. From some time past our interest was focused to find new possibilities
for characterizing the process of generation of the words by generative systems as, for
example, the phrase-structure grammars known in formal languages, up to an equiv-
alence. Some aspects regarding the complexity of discrete time systems are discussed
here. Also, we shall refer, in short, to models of the Brownian motion useful in many
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1 Introduction

Brownian motion, used especially in Physics, is of ever increasing importance
not only in Probability theory but also in classical Analysis. Its fascinating
properties and its far-reaching extension of the simplest normal limit theorems
to functional limit distributions acted, and continue to act, as a catalyst in
random Analysis. It is probable the most important stochastic process. As
some authors remarks too, the Brownian motion reflects a perfection that seems
closer to a law of nature than to a human invention.

In Physics, the ceaseless and extremely erratic dance of microscopic particles
suspended in a liquid or gas, is called Brownian motion. It was systematically
investigated by Robert Brown (1828, 1829), an English botanist, from move-
ment of grains of pollen in water to a drop of water in oil. He was not the
first to mention this phenomenon and had many predecessors, starting with
Leeuwenhoek in the 17th century. However, Brown’s investigation brought it
to the attention of the scientific community, hence Brownian.

Brownian motion was frequently explained as due to the fact that particles
were alive. It is only in 1905 that kinetic molecular theory led Einstein to
the first mathematical model of Brownian motion. He began by deriving its
possible existence and then only learned that it had been observed.
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A completely different origin of mathematical Brownian motion is a game
theoretic model for fluctuations of stock prices due to L. Bachélier from 1900.

In his doctoral thesis, Théorie de la spéculation, Ann. Sci. École Norm.
Sup., 17, 1900, 21-86, he hinted that it could apply to physical Brownian mo-
tion. Therein, and in his subsequent works, he used the heat equation and,
proceeding by analogy with heat propagation he found, albeit formally, distri-
butions of various functionals of mathematical Brownian motion. Heat equa-
tions and related parabolic type equations were used rigorously by Kolmogorov,
Petrovsky, Khintchine.

But Bachélier was unable to obtain a clear picture of the Brownian motion
and his ideas were unappreciated at the time. This because a precise definition
of the Brownian motion involves a measure on the path space, and it was
not until 1908-1909 when É. Borel published his classical memoir on Bernoulli
trials: Les probabilités dénombrables et leurs applications arithmétique, Rend.
Circ. Math. Palermo 27, 247-271, 1909.

But as soon as the ideas of Borel, Lebesgue and Daniell appeared, it was
possible to put the Brownian motion on a firm mathematical foundation. And
this was achived in 1923 by N. Wiener, in his work: Differential space, J. Math.
Phys. 2, 131-174, 1923.

Many researchers were fascinated by the great beauty of the theory of Brow-
nian motion and many results have been obtained in the last decades. As for
example, among other things, in Diffusion processes and their sample paths by
K. Itô and H.P. McKean, Jr., in Theory and applications of stochastic differen-
tial equations by Z. Schuss, or in Stochastic approximation by M.T. Wasan as
in Stochastic calculus and its applications to some problems in finance by J.M.
Steele.

Itô’s integral and other details and related topics in Stochastic Calculus are
developed among other by B. Øksendal & A. Sulem, J. M. Steele, P. Malliavin,
P. Protter, D. W. Stroock.

Some topics, in this sense, will be discussed below.

2 About some results involving the Itô’s formula

Firstly, is considered an example due to Z. Schuss ([20]), involving the Itô’s
formula.

Definition 21 A function f(t) which is independent of the increment w(t +
s)− w(t) for all s > 0 is called a nonanticipating function.

We observe that such a function depends stochastically on w(u) for u ≤ t,
that is, on the past only. For a nonanticipating step function f(t), the integral∫ t

0

f(s)ds dw(s)

is also a nonanticipating function.
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Let us denote by H2[0, T ] the class of all nonanticipating functions f(t) such
that ∫ T

0

E f2(t)dt <∞.

It is known (according to [20]) that for any function f(t) in H2[0, T ], there
exists a sequence {gn(t)} of step functions such that∫ T

0

|f(t)− gn(t)|2dt→ 0 a.s. (1)

as n→∞, and, also,∫ T

0

gn(s)dw(s)→ (limit) = L(t) a.s. (2)

as n→∞, uniformly for t in [0, T ].
If f(t) is a deterministic smooth function, the integral∫ T

0

f(t) dw(t)

is the Stieltjes integral and, hence,∫ b

a

f(t) dw(t) = f(b)w(b)− f(a)w(a) =

=

∫ b

a

w(t) f ′(t)dt a.s. (3)

Now, let X(t) be a stochastic process satisfying the condition

X(t2)−X(t1) =

∫ t2

t1

a(t)dt+

∫ t2

t1

b(t)dt

for all 0 ≤ t1 < t2 < T , where a(t) and b(t) are functions in H2[0, T ]. Then,
we say that X(t) has a stochastic differential

dX(t) = a(t)dt+ b(t)dw(t). (4)

Now we shall refer to the following example due to Z. Schuss ([20]).

Example 21 Let us consider the integral∫ b

a

w(t)dw(t). (5)

But w(t) is continuous a.s., so that the step functions wn(t), defined by

wn(t) =

n−1∑
i=0

w(ti)χ(ti+1ti)(t)
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where ti = a+ i
b− a
n

, i = 0, 1, 2, · · · , n, converge uniformly to w(t) in [a, b].

The integrals of wn(t) are as follows

In =

∫ b

a

wn(t)dw(t) =

n−1∑
i=0

w(ti)[w(ti+1)− w(ti)].

But

w(ti)[w(w(ti+1)− w(ti))] =

=
1

2
[w2(ti+1)− w2(ti)− (w(ti+1)− w(ti))

2]

so that one gets

In =
1

2

n−1∑
i=0

[w2(ti+1)− w2(ti)− (w(ti+1)− w(ti))
2] =

=
1

2
[w2(b)− w2(a)]− 1

2

n−1∑
i=0

(δiw)2,

where δiw = w(ti+1)− w(ti).
Let us denote now

ηn =

n−1∑
i=1

(δiw)2.

Then, the expectation and the variance of ηn are as follows

E ηn =

n−1∑
i=0

E (δiw)2 =

n−1∑
i=0

(ti+1 − ti) = b− a

and

D2 ηn =

n−1∑
i=1

D2 (δiw)2

for (δiw)2 being independent random variables. It is shown that

ηn → E ηn = b− a in probability as n→∞.

Therefore it follows that∫ b

a

wn(t)dw(t)→ 1

2
[w2(b)− w2(a)]− 1

2
(b− a),

so that ∫ b

a

w(t)dw(t) =
1

2
[w2(b)− w2(a)]− 1

2
(b− a). (6)
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Now we comeback to the stochastic differential (4) and consider X(t) =
w2(t). From (6) we have

w2(t2)− w2(t1) = 2

∫ t2

t1

w(t)dw(t) +

∫ t2

t1

1 dt (7)

so that one finds

dw2(t) = 1 dt+ 2w(t)dw(t). (8)

Therefore, a(t) ≡ 1 and b(t) = 2w(t). If f(t) is a deterministic smooth function
then, by (3), it results

f(t2)w(t2)− f(t1)w(t1) =

∫ t2

t1

f(t)dw(t) +

∫ t2

t1

w(t)f ′(t)dt

and finally one gets

d[f(t)w(t)] = f(t)dw(t) + w(t)df(t),

where df(t) = f ′(t).
Let us observe that Itô’s formula can be also written for systems. To this

end, let now be

w(t) =

w1(t)
· · ·
wn(t)


a vector of independent Brownian motions. Also, let v(x, t) be an n×n matrix,
and we consider a vector b(x, t)

b(x, t) =

 b1(x, t)
· · ·

bn(x, t)

 , x =

 x1
· · ·
xn

 .

The system of stochastic differential equations

dx = bdt+ vdw (9)

leads to the following Itô’s formula

df(x(t), t) = Lfdt+∇xfTvdw (10)

where

Lf =
∂f

∂t
+ b · ∇xf +

1

2

∑
i,j=1

aij ·
∂2f

∂xi ∂xj
≡

≡ ∂f

∂t
+Mf (11)
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and

aij = (v vT )ij . (12)

The backward Kolmogorov equation will take the form

∂p

∂t
+Mp = 0;

while the forward Kolmogorov equation will be as follows

∂p

∂s
+∇y · (bp)−

1

2

n∑
i,j=1

∂2(aijp)

∂yi∂yj
= 0.

3 Some considerations regarding the Brownian motion
in connection with chaotic and complex systems

Let us imagine a chaotic motion of a particle of colloidal size immersed in a
fluid. Such a chaotic motion of a particle is called, usually, Brownian motion
and the particle which performs such a motion is referred to as a Brownian
particle. Such a chaotic perpetual motion of a Brownian particle is the result
of the collisions of particle with the molecules of the fluid in which there is.

But this particle is much bigger and also heavier than the molecules of the
fluid which it collide, and then each collision has a negligible effect, while the
superposition of many small interactions will produce an observable effect.

On the other hand, for a Brownian particle such molecular collisions ap-
pear in a very rapid succession, their number being enormous. For a so high
frequency, evidently, the small changes in the particle’s path, caused by each
single impact, are too fine to be observable. For this reason the exact path of
the particle can be described only by statistical methods.

Thus, the influence of the fluid on the motion of a Brownian particle can
be described by the combination of two forces in the following way.

1. The considered particle is much larger than the particle of the fluid so that
the cumulated effect of the interaction between the Brownian particle and
the fluid may be taken as having a hydrodynamical character. Thus, the
first of the forces acting on the Brownian particle may be considered to
be the forces of dynamical friction. It is known that the frictional force
exerted by the fluid on a small sphere immersed in it is determined from
the Stockes’s law: the drag force per unit mass acting on a spherical particle

of radius a is given by −βv, with β =
6πaη

m
, where m is the mass of the

particle, η is the coefficient of dynamical viscosity of the fluid, and v is the
velocity of particle.

2. The other force acting on the Brownian particle is caused by the individ-
ual collisions with the particles of the fluid in which there is. This force
produces instantaneous changes in the acceleration of the particle. Fur-
thermore, this force is random both in direction and in magnitude, and one
can say that it is a fluctuating force. It will be denoted by f(t). For f(t)
the following assumptions are made:
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i The function f(t) is statistically independent of v(t).
ii f(t) has variations much more frequent than the variations in v(t).
iii f(t) has the average equal to zero.

In these conditions, the Newton’s equations of motion are given by the
following stochastic differential equation

dbfv(t)

dt
= −βv(t) + f(t) (13)

which is called the Langevin’s equation.
From the Langevin’s equation, the statistical properties of the function f(t)

can be obtained if its solution will be in correspondence with known physical
laws. One can observe that the solution of (13) determines the transition prob-
ability density (in brief the transition density) ρ(v, tv0) of the random process
v(t), which verifies the equation

P (v(t) ∈ A) |v(0) = v0) =

∫
A

ρ(v, t,v0)dv. (14)

Now, the initial velocity v0 can be supposed to be given. Then, one gets

ρ(v, t,v0)→ δ(v − v0)

as t→ 0 where δ is the Dirac′s δ-function. On the other hand, from the sta-
tistical physics it is known that the transition density ρ(v, t,v0) must approach
the Maxwell’s density for the temperature T of the surrounding medium and
this, independently of v0 as t→∞. We come to the limit

ρ(v, t,v0)→
( m

2πkT

) 3
2

e−
m|ν|2
2kT (15)

as t → ∞. This means, in other words, that the fluctuating force f(t) has
certain statistical properties. For the formal solution is as follows (according
to (13))

v(t) = v0 e
−βt +

t∫
0

e−β(t−s) f(z) dz. (16)

Therefore, the integral and the difference v(t)−v0 e
−βt must have the same

statistical properties. Since

v(t)− v0 e
−βt ≈ v(t)

for latge values of t, it results that the integral must have in the limit a normal
density. But the integral can be written as a finite Riemann sum in the following
way

t∫
0

e−β(t−s) f(z) dz ≈

≈ e−βt
∑
n

e βn∆t f(n∆t)∆t ≈ e−βt
∑
n

e βn∆t∆gn
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where was denoted ∆gn = f(n∆t)∆t. Hence, for large values of t, the following
approximation is found

v ≈
∑
n

e β(n∆t−t)∆gn. (17)

Here ∆gn is a random variable which gives the random accelerations trans-
mited to a Brownian particle in an inteval of time (n∆t), (n+1)∆t. Therefore,
the random variables ∆gn can be assumed to be statistically independent of
each other, the successive collisions being completely chaotic.

One can assume that, in comparison with the average period of a single
fluctuation of the function gn, the time intervals ∆t are enough large. The
function gn has a period of fluctuation of the order of the time between succes-
sive collisions which appear between the Brownian particle and the molecules
of the fluid.

Thus, if ∆gn is choosen to be a normal random variable with mean zero,
it follows that ν(t) will be also a normal random variable, as it is desired. By
means of 17, and setting D2(∆gn) = 2q∆t one gets

E|v|2 =
∑
n

2q∆t e 2β(n∆t−t) →

→ 2q

t∫
0

e 2β(z−t) dz =
q

β
(1− e− 2βt) (18)

as ∆t→ 0.
But, at the same time, one has

E|v|2 → kT

m

as t→∞, so that q is given by the equality below

q =
βkT

m
. (19)

If x(t) is the notation for the displacement of the Brownian particle then,
we have

x(t) = x0 +

t∫
0

v(z)dz. (20)

Now substituting (16) in (20) one gets

x(t) = x0 +

t∫
0

v0 e
−βz + e−βz

z∫
0

eβyf(y)dy

 dz.

If the order of integration is changed the following estimation follows

x(t)− x0 −
v0(1− e−βt)

β
=

= −e−βt
t∫

0

eβzf(z)dz

β
+

t∫
0

f(z)dz

β
≡

t∫
0

g(z)f(z)dz, (21)
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where g(z) =
1− eβ(z−t)

β
. If a finite sum approximation to the integral is used

again then, we come to the conclusion that

x(t)− x0 −
v0(1− e−βt)

β

is a normal random variable with the mean equal to zero and the variance given
by the equality

σ2 = 2q

t∫
0

g2(z)dz =
q

β3
(2βt+ 4e−βt − e−2βt − 3). (22)

Regarding to the probability density of the displacement x(t), it is given by
the follwoing equality

p(x, t,x0,v0) =

[
mβ2

2kT (2βt+ 4e−βt − e−2βt − 3)

] 3
2

×

× e
−

mβ2
∣∣∣x− x0

1−e−βt
β

∣∣∣2
2kT (2βt+ 4e−βt − e−2βt − 3) . (23)

Finally, for sufficiently large values of t it results

p(x, t,x0,v0) ≈ 1

(4πDt)
3
2

e−
|x−x0|

2

4Dt (24)

where D is

D =
kT

mβ
=

kT

6πaη
. (25)

and is referred to as the diffusion coefficient.
Therefore, it results that p(x, t,x0,v0) satisfies the diffusion equation given

below
∂p(x, t,x0,v0)

∂t
= D∆p(x, t,x0,v0). (26)

The expression of D in (25) was obtained by A. Einstein.

Observation 31 From physics it is known the following result due to Maxwell:
Let us suppose that the energy is proportional to the number of particles in a
gas and let us denoted E = γn, where γ is a constant independent of n. Then,

P{a < v1i < b} =

b∫
a

(
1− x2m

2γn

) 3n−3
2

dx

+( 2γn
m )

1
2∫

−( 2γn
m )

1
2

(
1− x2m

2γn

) 3n−3
2

dx

→

→
(

3m

4πγ

) 1
2

b∫
a

e
−

3mx2

4γ dx.
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Now, for γ =
3kT

2
the following Maxwell’s result is found

lim
n→∞

P{a < v1i < b} =
( m

2πkT

) 1
2

b∫
a

e
−
mx2

2kT dx.

T is called the ”absolute temperature”, while k is the ”Boltzmann’s con-
stant”.

Conclusion 31 We think that when, in various problems, we say ”chaos” or
”chaotic and complex systems” or we use another similar expression to define
the comportment of some natural phenomena, in fact we imagine phenomena
similarly to a Brownian motion which is a more realistic model of such phe-
nomena.

4 In short about the complexity of discrete time systems

4.1 Generative systems

In the process of transmission of information a very important aspect is that
of generation of the words by a generative system. In our tentative for find-
ing new possibilities to characterize the process of generation of the words by
sequences of intermediate words we have adopted a stochastic point of view in-
volving Markov chains. Because such sequences of intermediate words (called
derivations) by which the words are generated are finite, it results that finite
Markov chains will be connected to the process. In order that our discussion
should be as general as possible, the derivations are considered according to the
most general class of formal grammars from the so-called Chomsky hierarchy,
namely those that are free of any restrictions and are called phrase-structure
grammars.

The novelty that we have introduced consists in the fact that the process of
generation of the words is organized by considering the set of all the derivations
according to such a grammar split into equivalence classes, each of them con-
taining derivations of the same length (here we are not interested in the internal
structure of the intermediate words of a derivation but only in its length). We
remind some basic definitions and notations.

A finite nonempty set is called an alphabet and is denoted by Σ. A word
over Σ is a finite sequence u = u1 · · ·uk of elements in Σ. The integer k ≥ 0
is the length of u and is denoted by |u|. The word of length zero is called the
empty word and is denoted by ε. If Σ is an alphabet, let us denote by Σ∗ the
free semigroup, with identity, generated by Σ (Σ∗ is considered in relation to
the usual operation of concatenation).

Definition 41 A phrase-structure grammar is a system G = (V,Σ, P, σ) where

i V is an alphabet called the total alphabet;
ii Σ ⊆ V is an alphabet the elements of which are called terminal symbols

(or letters);
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iii P is a finite subset of the Cartesian product [(V \ Σ)∗ \ {ε}] × V ∗. Its
elements are called productions;

iv σ ∈ (V \Σ) is referred to as the initial symbol. The elements of V \Σ are
called variables (or nonterminals).

For y and z in V ∗ it is said that y directly generates z, and one writes
y ⇒ z if there exist the words t1, t2, u and v such that y = t1ut2, z = t1vt2
and (u, v) ∈ P . Then, y is said to generate z and one writes y

∗⇒ z if either
y = z or there exists a sequence (w0, w1, · · · , wj) of words in V ∗ such that

y = w0, z = wj and wi ⇒ wi+1 for each i ( we write
∗⇒ for the reflexive-

transitive closure of ⇒). The sequence (w0, w1, · · · , wj) is called a derivation
of length j and from now on will be denoted by D(j). Because a derivation of
length 1 is just a production we shall suppose that the length of any derivation
is ≥ 2.

Now we consider the family D of all the derivations according to our gen-
erative system. Let Dx be the class of all the derivations of length x in D. We
set

n = max{x|D(x) ∈ Dx and x ≥ 2}.

Evidently, D split into equivalence classes each of them being represented by
one of its elements arbitrarily chosen. Let us consider Dx = (w0, w1, · · · , wx).
Then, let K be the following set of sequences:

K = {(wh, · · · , wk)|(wh, · · · , wk) ⊂ D(x)

and h > 0, or k < x or the both}.

Now, if N is the set of all natural numbers then, for k ∈ N , the set of first k
natural numbers is denoted by [k]. A function p : [α]→ K, where α ∈ [x−1], is
called a partial derivation of length α of D(x). The length of a partial derivation
p ⊂ D(x) will be denoted by |p| if another specification is not made. Evidently
for each p(α) ⊂ D(x) we have α ∈ [x − 1], so that the condition x ≥ 2 is
justified. For p1, p2 ⊂ D(x) we write p1 ≤ p2 to mean that |p1| ≤ |p2| and
p1(j) ≤ p2(j) for all j ∈ [|p1|]. It is easy to see that ≤ is a partial order in the
set of all partial derivations of D(x).

4.2 The Markov dependence case

Now we consider that a word is in a random process of generation, the equiva-
lence classes of derivations being connected into a simple Markov chain. Obvi-
ously, it can or cannot be generated into the equivalence class Dx. Thus, if it
is, then the probability that it should be also generated into the class Dx−1 is
denoted by γ; but given that it is not generated into Dx, the probability that
it should be generated into Dx+1 is denoted by β. Now we take into consider-
ation only the case when a word cannot be generated by an equivalence class
of derivations. Thus, if it is not generated by the class Dx, x ≥ 2, then it will
be generated by the class Dx−1 with probability q and by the class Dx+1 with
probability p = 1− q. Relating to the first and the last classes we suppose that
it can or cannot be generated by them.
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But for the case when it is not generated we put the following supplemental
conditions:

1 If it is not generated by the first class D2 then, it will be certainly generated
by the next class.

2 If it is not generated by the last class Dn then, it will be certainly generated
by the last but one.

We refer to such a way for generating words as being a fork-join generation
procedure. For the other classes Dx, 2 < x < n, we suppose that a word, being
in each of them, is subject to a fork-join generation procedure.

Four cases arise:

i The word will be generated by the first class and the last;

ii it will be generated by the first class but it will be not generated by the
last;

iii it will be not generated by the first class but it will be generated by the
last;

iv it will be not generated both by the first class and the last class.

For each of these we determine the two-step transition matrix and we come
to the following result:

I. The rows of rank i = 3, 4, · · · , n − 3 contain, each of them, the triplet of
elements q2, 2pq, p2 disposed with q2 and p2 on two diagonals to the left
and respective to the right of the main diagonal which contains the element
2pq.

II. The first two and the last two rows are different from a case to another.
Thus, for these rows we have:

• In the first case: p11 = pn−1 n−1 = 1; p21 = q; p22 = pn−2 n−2 = pq;
p24 = p2; pn−2n−4 = q2 and pn−2n−1 = p.

• In the second case: p11 = 1; p21 = pn−1n−3 = q; pn−1n−1 = p; p22 = pq;
p24 = p2; pn−2n−4 = q2 and pn−2n−2 = p+ qp.

• In the third case: p11 = q; p13 = pn−2n−1 = p; pn−1n−1 = 1; p22 = q+pq;
p24 = p2; pn−2n−4 = q2 and pn−2n−2 = qp.

• In the fourth case: p11 = pn−1n−3 = q; p13 = pn−1n−1 = p; p22 = q + pq;
p24 = p2; pn−2n−4 = q2 and pn−2n−2 = p+ qp.

Thus, we obtain a common property of these four matrices that is a specific
property of symmetry and that can be stated as follows

Theorem 41 (Symmetry Property). If a word is in a random process of
generation by a fork-join generation procedure, then in all cases of generation,
the two-step transition matrix has n−5 successive rows each of them containing
the triplet of elements q2, 2pq, p2 symmetrically disposed as against the first
two and the last two rows. Furthermore q2 and p2 are elements of two distinct
diagonals symmetrically disposed as against the main diagonal which contains
the element 2pq.
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Let us remain in the case when a word is generated by more derivations
according to a given generative system. This is a specific propriety of the
so-called ambiguous languages, that is inte-resting to be characterized.

To this end let νx be the number of derivations into the equivalence class
Dx, x ≥ 2, by which the word w is generated. Obviously νx is a random
variable that takes the values 1 and 0 with the probabilities px and qx = 1−px
respectively. Then, the number of derivations in n − 1 equivalence classes by
which w is generated is the following

ν =

n∑
x=2

νx

Now, because the equivalence classes of the derivations are connected into
a homogeneous Markov chain, the expectation and the variance of ν are as
follows

Eν =

n∑
x=2

Eνx = (n− 1)p+

n∑
x=2

(p1 − p)δx−1 = (n− 1)p+ (p1 − p)
δ − δn

1− δ
(27)

and

Dν = E

[ n∑
x=2

(νx− px)

]2
=

n∑
x=2

E(νx− px)2 + 2
∑

i<j,i≥2

E(νi− pi)(νj − pj) (28)

Now regarding the expectation of ν, excepting (n − 1)p the other term is
bounded as n increases, such that it results Eν = (n−1)p+un, while regarding
its variance excepting (n − 1)pq and npq δ

1−δ , the other all terms are bounded

as n increases, so that we get Dν = (n−1)pq+2npq δ
1−δ +vn, where un and vn

are certain quantities that remain bounded as n increases. Thus, the following
main result is obtained

Theorem 42 If among the equivalence classes of the derivations according to
a generative system G, a Markov dependence exists then, L(G) tends to become
an ambiguous language of order n if there exists a word w ∈ L(G) such that
the expectation and the variance of the random variable giving the number of
derivations by which w is generated verify the following relations

Eν = (n− 1)p+ un

Dν = pq

[
n

1 + δ

1− δ
− 1

]
+ vn

4.3 A limit theorem

Now we consider the special case when a word can be generated into the equiv-
alence class of a derivation on the following conditions:

1 It can be generated into the class Dx, x ≥ 2, by more of its elements.
2 If it is not generated into the class Dx, x ≥ 2, then it is generated into the

preceding and the next class.
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We refer to such a way for generating words as being an alternating gen-
eration procedure. We shall use the notation w for the case when this word is
generated into an equivalence class and the notation w otherwise.

We propose to determine the probability Pn(k) that a word w should be
generated by m (m < n) derivations in the following ways:

i It will be generated by the first class and the last and there is a direct rule
(σ,w);

ii It will be generated by the first class but it will be not generated by the
last and there is a direct rule (σ,w);

iii It will be not generated by the first class but it will be generated by the
last and there is not a direct rule (σ,w);

iv It will be not generated both by the first class and the last and there is not
a direct rule (σ,w).

Then Pn(k) is given by the following equality

Pn(k) = Pn(k,ww) + Pn(k,ww) + Pn(k,ww) + Pn(k,ww) (29)

where Pn(k,ww) is the notation for i, and so on.
Now, computing the terms in (29), it results:

Pn(k,ww) ≈ p1β√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2

2 ,

Pn(k,ww) ≈ p1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2

2 ,

Pn(k,ww) ≈ q1β√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2

2 ,

Pn(k,ww) ≈ q1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2

2 .

Pn(k) will be obtained by adding these probabilities, and we get

Pn(k) ≈ p1β + p1(1− γ) + q1β + q1(1− γ)√
2π[kγ(1− γ) + (n− k)β(1− β)]

e−
z2

2 .

or, after some transformations

Pn(k) ≈ 1− γ + β√
2πnpq(1 + γ − β)(1− γ + β)

e−
z2

2 .

Thus, the following main result is obtained

Theorem 43 If a word is generated by an alternating generation procedure,
according to a generative system just considered, the derivations of which be-
longing to n equivalence classes then, the probability that it should be generated
by k classes out of n is given by the following relation

Pn(k) ≈ 1√
2πnpq

√
1− γ + β

1 + γ − β
e−

z2

2

.
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19. Protter P., Stochastic Integration and Differential Equations: a New Approach.
Springer-Verlag, 1990.

20. Schuss Z., Theory and Application of Stochastic Differential Equations. John
Wiley & Sons, New York, 1980.

21. Steele J.M., Stochastic calculus and financial applications. Springer-Verlag New
York, Inc. 2001.

22. Stroock D. W., Markov Processes from K. Itô Perspective. Princeton Univ. Press,
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