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Abstract: Rotationi Expansiori Translationi Reflectionchaotic modelshow despite

of its simple generators complex structureattresemblein 2 dimensions without
referring to any materigroperty- well knownfluid/flux vortex flow patternsas recently
shown by SkiadadHere the model is generalized and extendeu*® dimensions with

N = n(nv1)/2 rotational degrees ofdedom and the maximum &f = n{riv1)(mv2)/2
singularity rotations on the sphere and hyper sphere with rotation matrix operations given
by theorthogonal grou(n), special orthogonal group S or Lie spin group Spin)

with hierarchical relationsThe radial distance to the singularities located on the rotation
axes leads to the Skiadas power law rotation parameterized by a power exponent and
rotation strength. Patterns often show characteristic flux lines emitted from a chaotic core
near to a sindarity. The noArcommutative permutations of the nrahelian rotation
group elements are relevant for encryption purposes.

Keywords: Chaotic modelingDiscrete map RotationTranslation, RotatiofRotation,
molecular interaction v . K § r nb§ole-diote, r Ghaotic, simulation Chaotic
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1. Introduction

In quantum physics the spatial probability density and its symmetries are a basic
concept to describe the evolution of observables obtained from stochastic
(jump) processes in phaspaceThe Rotationi Expansioni Translationt
Reflection pattern generation approach of Skiadas proadsfor spatial
density stuctures but from iterative difference equatigenerating more or less
chaotic jumps [1, 2, 3]. The first results Ki&lasaresy er y si mi |l ar to v. K&r m§
Strees, see fig 1, or even elliptic galaxies formationSince a translation is a
special case of a rotatiavith the rotation centre located at very large distances,
applying subsequent rotations repeatedly arourfterdnt rotation centres
should also provide for interesting patterns, especially if the rotations are a
function of a spatial distance with respect to one or more singularities, where
rotations grow infinite due to a power law with negative exponent. \llle w
focus in this paper onto the rotatiostation chaoti phase jump processes on
hyperspherical loops with larger or smaller chaotic core regions, which depend
on characteristic numbers and symmetries. Siheesignalp, jumpsin hyper
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space or on hyper spheres, the resulting patterns could be relevant to physics
and quantum spin groups in higher dimensions gt we will introduce the
rotationtranslation approach in two dimensions-Of with one or more
singularities andhen replace the translation by another rotation and generalize
to n dimensions on (hyper) spherical surfaces. After generating some new
chaotic jump pattern by extendirtpe Skiadas algorithm and relatirig to

proper physics attributes, some new input €anom discussions during and
shortly after the conference, especially from some authors of referengés [1]

2. The 3-D Expansion/Rotations/Translation Model

In 3-D Euclidian space we can map the Skiadas model onto the sphere with 2 or
3 rotations.A vector coordinatep, will describe the signal location attine t

and after oa jump time intervalf at p,,,, where he signal startat p,. First

we apply aexpansiofreflectionmatrix E, then applyN = 3 different rotation in
planes B, i=0,1,..N -1, each containingl =0,1,..m -1 singularities s,
defining the rotation centre. At this location the axe§, intersect P
orthogonally. The rotation angle/;, are given by the Skiadas powlaw [1]

3 M

Ji=2m
¢ t_s,l|

2,

¢

g D

with distance between sigal and singularity coordinate{spt- 3,,|, power
exponent valueusually in the range-3, and coupling cortants c,. We have
chosen a form producing patterns linearly scaling with the jump disqanhrce

while preserving shape. For one singularity per dimensip1 the three
rotatiors withangles J, are computed by the rotationatricesR; applied in a

given permutation sequence. We take a proper coordinate system diagonalizing
E with pure diagonal expansion/refleaticomponentse, =0 for i, j and
|eXX|:|eW| e/ ©. For this case we will use the short notation
E=ED(e,.€,,€,), a negative sign shows a-salled reflection in the
corresponding coordinat These components and boundary conditproside

for the basic @D recurrent algorithm and difference equation as a simple
extension to [1, 2, 3] generating one jump with dista11|xze| after the
intervalf . If we assume orthogonal rotation axes with rotation matriees
elements of the SO(3) rotation group, we have a common rotation centre located
at r as the intersection of the rotation axes with one $amggy from every
dimension (n =1) andorthogonal axesX,,™ X, "X ,., where the chaotic

map given by

pw:V[ -RzgngRogz[pt r'] %r- (2)
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To get pure rotationshé straight translation shift/t| in egs.(2) and(1) could
be approximated by constant orbitatatiors in one dimension with labglnd
|rj |JJ. =2 v | leading to the Skiadas rotations coupling

a r.|J.
J,=2me———— 0,in3Dweusuallytaked, =2, (3)
2polp.-s,[ 2

where the coupling factoc. can be varied in a wide raggSpin is given by an
orbital rotation with labeli=j that has one singularity at the centre
S; 0 =(0,0,0), where

d
J
|ri|
=, |dj :

"

The iterative3-D differenceequation(2) for onestart point or delta distribution
P, = P,-, With 3 singularities and 3 orthogonal rotatiagssow

P =R ,R R [ 7] g (5)

To obtain interesting patterns on the spherical surface w&sgt R, as the

EWA T
j o for d; =1 simply |p,| =¢; |rj| : )

constant longitude or orbital advance, aRj, =R, for the altitude. Both

rotations rotate around singularities given by

' m,;=1, one longitude rotatiorR,, =R, rotating arounds,,,=(0,0,0)
with power law exponentd,,,=0 and rotation/coupling strength
G =20 M7,

1 m,=1, one latitude rotatioR, , =R, rotating arounds, ,, =(0,0,1) with
power law exponent d,,,=2 and rotation/coupling strength
Q.,Z,lzzpk-zM z.

As an example, awo-angle rotatiorand sgnal positionp, subject torotation in

3-D spherical coordinateg, / and singularity rotations/, = J, J, = ¢, is

given by

asin/ cosf & cosJ cosqg - sin Jcos g sin
P,/ /):g cos f ,R(q, ng sin J cos J 0
g?sinj sin f 89 cosJ sing sin &in g cos

With one singularity located a, =(0,0,1) with d = 2 and one at the centre
s, =(0,0,0) with d = 0 we get the twscalar rotatios in spherical coordinates
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- q _2pj _ 1
c , g= ,C= . 6
4p(1- sin jsin 7=\ j’k? (©)

3. Hyper-Sphere ExpansionReflection-Rotations Map

The extension tthe nD signal mapp, - p,,, with rotations embedded imD
Euclidean space fon2 3 is straight forwardThe matrix operations are based
on theorthogonal grou®(n), or theLie spin group Spinf) asthe double cover
of the special orthogohgroup SOG) defining then? n rotation marices R, , .
The number of rotational degrees of freedmmd number of orthogonadtation
planesP,, is

On ~ _
N(n):% %@ N(nz 2) 4,3, 6,10,15, 21, 28, 36, 4E. (7)
(; -

One plane can have orthogonal axesintersecting the plane at the singularity
locatons s, ,, | labels all orthogonal axes with, a,| b. We rotate on this
plane if the rotation plane has at least one orthogonal interseatipr O at the
singularity locations. The maximumumber of singularities per dimensias
m,,=(n- 2), if m,, =0 there are no singularities and no rotationsjn . So
the total number of possible orthogonal axis intersections for all plane$hend
maximum number of singularities E=(n 2)N na(n 1n 2){2. There is
aset ofN orthogonal matriceRR,,' =R,, R,,' with detR,, =1 defining
the special orthogonal groupO() given according to [4] by

la=C0SU, ., )

rb,b = COS(]a,b,l )

> |lap = SINU,yp)
5" Tha = Sin(-]a,m)

rj,j :Lj ,a,j b
r, =0, elsewhere

@ (D~ D D~ D

R.oWan) ; ©)

@D~ D~ (D~ (D

with trace n- 2gl -cos{¢,,, ) and anglesJ,,,, |, a,l Jb. The signal is

located on the hypespheresThe sequence ofrthogonal matrices rotating a
vector x, in Euclidean space must be ordered

Ras[x] :R_g..gqavbg...ga"[xt] & (9)

coverirg all possible rotations or a subssta permutatiorBuilding the chaotic
map with an n-D expansion/reflectionE then applying the rotation sequence
R,s We have
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P.. =R [P, 7] g+ (10)

We are left to specify the generalized rotation anglgs,, the matrix
coefficiens for a rotationR, ,(J, ,,) . the number of singularitigser dimension
m,,, and the temporal order of rotatioriBhe anglesJ,,, corresponding to
S, Will have with stengthc,, i O, metric distanc:eipt - Sa,b,|| , and power
exponentd, ,, 2 0 a form given by

a

b,|

3 v

ot =2 By, 8 - (11

Q t Sa,b,l|

To systematically generate meaningful setup valireshigher dimensions
providing for interesting patterns fon > 2 with physical relevangewe
recommend for simplicity to take a Gattgpe classicalcouplingfield gradent
power exponent

d.p=n 4, (12)

where the gradient power exponent i s
plus 1 (br 3D we haved,,, =2, see below). But of course, as Skiadas has
shown there are several exponents that can lead to nice patterns. The power law
coupling strength is scaling withe field gradient power exponesatd coupling
numberk

Capy = K &0 (13

The temporal order of rotation®,, part of the global sequencB,;as a
permutation sequence must be given in order to setup the map and reproduce
results. For the purposes of this paper we letaim an outer loop from 0 to

n-1, thenb in the next inner loop froma+1 to n-1 covering the

N =n(n -1)/2 orthogonal rotation planeB,, with orthogonal matrice®, ,

and finallyl in the most inner loop from 0 to- 1 with | |, a,1 b, since every

plane hasn- 2 orthogonal axes intersecting at the singularities providing for
the total number of singularities rotatiohs=n(n 1)(n 2)/2.
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4. Results

4.a Four basic2-D rotation -translation types with radial power -3

Fig. 1. Left (Skiadas [1])EC = (1,-1). Right EC ={1,1) , randomized starts.

L
| | l \l j ," / /"J ‘j# ,‘" / /
[
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/

Fig. 2 Left (Skiadas 8]): EC = (L, 1) RightEC =(-1,-1), randomized starts

4.b Periodic boundary (at d, =16 ) in 2-D at power -3
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4.c Helical twist and 2-D rotation in 3-D

Py T a = o
:’” i B @ \‘p %

& e 5 T

Fig. 6.3-D cyclic within d, =16& , power-3, with extradouble helix rotation
¥ =5mx/d, proportional to distance, EC = (1, -1), randomized starts.

4.d. Multi -singularity and multi-expansion in2-D, overlapping patterns

&

Fig. 7. Two equalsingularities: positive at (0,0) and negative located a0 j
=1,2,3,4,5, powet3, EC = (L, 1). Right enlarged = 1 with one positive (blue)
and one negative (red) singtity.

Fig. 8. Three singularities atifferent locations, powes3, multi expansion, 3
differentEC: (1, 1) and(1, -1) and(-1, -1), randomized starts.



