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Abstract. Binomial, Poisson and Negative Binomial are the basic count models
whose probability mass function satisfies a simple recursive relation. This has been
used by Panjer [8] to iteratively compute the density of randomly stopped sums,
namely in the context of making provision for claims in insurance. Pestana and
Velosa [9] used probability generating functions of randomly stopped sums whose
subordinator is a member of Panjer’s family to discuss more involved recursive rela-
tions, leading to refinements of infinite divisibility and self-decomposability in count
models. After discussing multifractal measures generated by the geometric and by the
Poisson laws, as guidelines to define multifractals generated by general count measures
with denumerably infinite support, the complex recursivity of Pestana and Velosa [9]
classes of randomly stopped sums is exhibited, hinting that randomness can bring in
deeper meaning to multifractality, that, as Mandelbrot argues, is a vague concept that
remains without an agreed mathematical definition. A simple random extension of
binomial and multinomial multifractals, considering that each multiplier of a cascade
is the outcome of some stochastic count model, is also discussed in depth.
Keywords: Count models, probability generating functions, multifractal measures,
random multipliers.

1 Introduction

Simple introductory texts on multifractals, v.g. Ervertsz and Mandelbrot [2],
use binary splitting and multiplicative cascades generating binomial measures
as a straightforward and intuitive example. Mandelbrot [6] (p. 83–84 and 89–
91) also uses the binomial measure to exhibit the complications that arise
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when self-similarity and self-affinity are applied to measures rather than to
sets, restricting the probability p to take values in the interval [0, 12 ].1

Ervertsz and Mandelbrot [2], under the heading “Beyond Multinomial Mea-
sure” (p. 937–938), briefly mention multifractal measures generated by a count-
ably infinite support probability mass function. In Section 2 we detail the
construction of such measures starting either from a geometric distribution or
from a Poisson distribution.

On the other hand, Mandelbrot [6] (p. 14) states that “the terms fractal
and multifractal remain without an agreed mathematical definition”, although
the fact that self-similarity, self-affinity and the ensuing mild or wild variability
play an essential role in their theory. Binomial, negative binomial and Poisson
count measures probability mass functions satisfy some sort of self-similarity, in
the sense that pn+1 = (a+ b

n+1 ) pn, n = 0, 1, . . . , a recursive expression that has
been successfully used by Panjer [8] to iteratively compute densities of randomly
stopped sums whose subordinator is one of the above mentioned count models,
and our first choice has been to exploit implications and extensions of this
extended kind of self-similarity. Observe that the simplest cases are N _
Poisson(b) for a = 0 and N _ Geometric(1 − a) for b = 0, leading to simple
forms of extended self-similarity, and that for this reason are the topic of Section
2.

In Section 3 we briefly mention the basic count models whose probability
mass function satisfies some sort of mitigated self-similarity, extending Panjer’s
[8] class, and we use probability generating functions investigated in [9] to
discuss multiple self-similarity, extending results in [1].

In Section 4 we discuss other pathways to multifractality, extending the
construction of binomial/multinomial measures to accommodate the case of
countably infinite support discrete generators, using randomness as a device to
operate this alternative extension of multifractality.

1In fact, for p = 1/2 the procedure leads to the uniform measure in (0,1), a straight-
forward consequence of the binary representation of real numbers in the interval (0,1)

∞∑
k=1

Xk

2k
, Xk _ Bernoulli

(
1

2

)
, independent

and of Borel’s pioneering construction of continuous probability. As Mandelbrot [6] (p.
45) states, “The definition of multifractality used in this book and almost everywhere
else in the literature [. . . ] is limited to singular non-negative measures constructed
using continuous non-decreasing generators.”

Feller [3] (p. 141–142), on the same issue, denoting Fp the distribution of

Yp =

∞∑
k=1

Xk

2k
, where Xk _ Bernoulli(p), independent,

observes that Y 1
2

is the standard uniform random variable, and that Yp is a singular

random variable for each p 6= 1/2. He further comments that “A little reflection [. . . ]
reveals that a decision [on the fairness of a coin] after finitely many trials is due to
the fact that Fp is singular with respect to F 1

2
(provided p 6= 1/2). The existence of

singular distributions is therefore essential to statistical practice.”
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2 Geometric and Poisson generated measures

Let X _ Exponential (1/δ), and define the countably discrete random variable

N =

{
k = 0, 1, . . .
pk = P[N = k] = P[k ≤ X < k + 1] = (1− e−δ)(e−δ)k

i.e., N = bXc_ Geometric(1− e−δ) (bxc denotes the integer part of x).
On the other hand, from the probability integral transform,

1− e−δX
d
= e−δX

d
=U _ Uniform[0, 1].

Thus, starting from the interval [0,1], in the first step [0,1] is splitted in
countably many subintervals,

[0, 1] =

∞⋃
k=0

(
e−(k+1), e−k

]
=

∞⋃
k=0

Ik(1)

to which we attach probabilities mk = (1− e−δ)(e−δ)k, k = 0, 1, . . . .
In step 2, each Ik is treated as a reduction of the original [0,1] interval, i.e.,

using self-explaining standard notations for the translation and scaling of sets,

Ik(1) =

∞⋃
j=0

{
e−(k+1) +

(
e−k − e−(k+1)

)(
e−(j+1), e−j

]}
=

∞⋃
j=0

Ij
k
(2),

so that [0, 1] =

∞⋃
k=0

( ∞⋃
j=0

Ij
k
(2)

)
, and to each interval Ij

k
(2) we attach the

probability mkmj .
In step 3, the subintervals Ij

k
(2) are treated as the Ik intervals in step 2, and

similarly in the countably infinite steps that follow to build up a multifractal
generated by a Geometric initial measure. Notations soon become cumbersome,
but the principles used in the build up of the multiplicative cascade mk1mk2 · · ·
are simple. In Figure 1 we show the initial four steps of the construction of the
geometric measure with the parameter 1− e−1.

The procedure described above is intuitive in view of the geometric dis-
cretization of the exponential measure, but it can in fact be used with an
initial generator whose support is N, namely N _ Poisson(λ).

NG _ Geometric(p) may be looked at as the “unit” of the class of Negative
Binomial(r, p) random variables, in the same sense that NB _ Bernoulli(p)
is the unit of Binomial(n, p) random variables. On the other hand the sum of
independent Poisson random variables is Poisson, and hence we may consider
that NP _ Poisson(1) is the unit of the class of Poisson(λ) random variables.
Observe also that the Poisson is a yardstick in the perspective of dispersion,
since its dispersion index Var[NP ]/E[NP ] = 1, while Binomial(n, p) random
variables are underdispersed and NegativeBinomal(r, p) random variables are
overdispersed.
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Fig. 1. Construction of the geometric measure with parameter 1− a = 0.63 (i.e.
δ = 1) — the initial four steps
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Observe also that Binomials, Poissons and NegativeBinomials are the only
discrete classes of natural exponential families whose variance is at most a
quadratic function of the mean value (Morris [7]), who writes “Much theory is
unified for these [...] natural exponential families by appeal to their quadratic
variance property, including [...] large deviations”, one of the tools routinely
used to investigate dimensionality issues in multifractals. Without pursuing the
matter further herein, we remark that a differential simile of Panjer’s difference
iteration is f ′/f = a+ b/x, where f denotes the density function of a positive
absolutely continuous random variable, and hence f must be the density of a
Gamma(b+1,− 1

a ) random variable, for b > −1 and a < 0. The gamma random
variables are the sole Morris continuous random variables with positive support.
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3 Extended self-similarity of basic count models

Let

N =

k = 0, 1, 2, . . .

pk = P[N = k]

be a count random variable. Panjer [8] made an important breakthrough in
insurance theory by showing that the only non-degenerate random variables
whose probability mass function satisfies the recurrence relation

pn+1 = pn

(
α+

β

n+ 1

)
, n = 0, 1, . . .

are the Poissons, the Binomals and the Negative Binomials, and that the above
recurrence relation can be used to deduce an iterative procedure to compute
the density of randomly stopped sums

N∑
k=0

Xk, Xk independent random variables, independent of N,

often used as models for aggregate claims, cf. [5] or [10]. Further generalizations
may be constructed relaxing the iterative expression to hold for n ≥ k0, see
Hess et al. [4] construction of what they call basic count models.

A further generalization can be developed as follows:
Consider discrete random variables Nα, β, γ whose probability mass func-

tions (p.m.f.)
{
pn = fNα, β, γ(n)

}
n∈N satisfy the relation

fNα, β, γ(n+ 1)

fNα, β, γ(n)
= α+ β

E(Un0 )

E(Unγ )
= α+

β∑n
k=0 γ

k
, α, β ∈ R, n = 0, 1, . . .

where Uγ _ Uniform(γ, 1), γ ∈ (−1, 1). As

E(Unγ ) =
1

n+ 1

1− γn+1

1− γ
−→
γ→1

1,

Panjer’s class corresponds to the degenerate limit case, letting γ−→ 1 so that

Uγ −→
γ→1

U1, the degenerate random variable with unit mass at 1.

The probability generating function Gα, β, γ(s) =

∞∑
n=0

fNα, β, γ(n) sn must then

satisfy

Gα, β, γ(s) = Gα, β, γ(γn+1s)

n∏
k=0

1− αγk+1s

1− [α+ β(1− γ)]γks
.

Observing that

Gα, β, γ(s)

Gα, β, γ(1)
=
Gα, β, γ(γn+1s)

Gα, β, γ(γn+1)

n∏
k=0

1−αγk+1s
1−[α+β(1−γ)]γks

1−αγk+1

1−[α+β(1−γ)]γk
,
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and letting n→∞,

Gα, β, γ(s) =

∞∏
k=0

1− αγk+1s

1− αγk+1

1− [α+ β(1− γ)]γk

1− [α+ β(1− γ)]γks
. (1)

If γ ∈ [0, 1), α < 0 and β ∈
{
− α

1−γ ,
1−α
1−γ

}
, we recognize in (1) the probabi-

lity generating function of an infinite sum of independent random variables,
the k-th summand being the result of randomly adding 1, with probability
αγk+1/

(
αγk+1− 1

)
, to an independent Geometric(1− [α+ β(1− γ)]γk) ran-

dom variable. Each summand exhibits its own scale of extended self-similarity,
a characteristic feature observed, in what concerns self-similarity and self-
affinity, in strict sense (in Madelbrot’s perspective) multifractals.

The limiting case γ = 1 may be approached as follows: observing that

Gα, β, γ(s)− Gα, β, γ(γs)

αs[Gα, β, γ(s)− Gα, β, γ(γs)] + (1− γ)s[βGα, β, γ(s) + αGα, β, γ(γs)]
= 1,

dividing the numerator and the denominator by (1− γ)s and letting γ→1, we
get

G′α, β, 1(s)

αsG′α, β, 1(s) + βGα, β, 1(s) + αGα, β, 1(s)
= 1⇐⇒

G′α, β, 1(s)

Gα, β, 1(s)
=

α+ β

1− αs
,

the expression we obtain working out the probability generating function in
Panjer’s iterative expression

pα, β(n+ 1) =

(
α+

β

n+ 1

)
pα, β(n), α, β ∈ R, n = 0, 1, . . . .

So, while Panjer’s recurrence relation and Hess et al. extension for the basic
count models exhibit a single scaling, (1) exhibits multi-scaling as typical of
multifractals.

4 A simple generalization of the binomial/multinomial
measure

There are many pathways to expand the notion of a multiplicative cascade. One
is to consider that each multiplier is the outcome of some stochastic rule. These
kind of multiplicative iterative schemes are usually called random multiplicative
cascades.

In Section 2 we introduced the geometric and Poisson generated measures.
In this section we shall expand differently the notion of random multiplicative
cascades by allowing the number of subdivisions that each interval undergoes,
at each step of the measure construction, to be determined by the outcome of
a discrete random variable N , where P[N ≥ 2] = 1. This procedure has some
similar aspects with the binomial and multinomial measures. However, at step
k, k = 1, 2, . . . , the outcome of N will dictate the number of subdivisions that



Chaotic Modeling and Simulation (CMSIM) 1: 39–50, 2013 45

each interval suffers. In this new scenario the multipliers used at each step will

also depend on the outcome of N , i.e., mi = m
(N)
i .

Starting with the interval [0,1], having uniformly distributed unit mass, the
new measure is formally constructed as follows:

Step 1: Generate an observation n1 from the random variable N . Split the
interval [0,1] into the n1 equally length subintervals

[in−11 , (i+ 1)n−11 ] , i = 0, 1, . . . , n1 − 1, (2)

with uniformly distributed masses m
(n1)
i , i = 0, 1, . . . , n1 − 1, respectively;

Step 2: Generate a second observation n2 from N , independent from n1. Split
each interval in (2) into n2 equally length subintervals and use the multipli-

ers m
(n2)
i , i = 0, 1, . . . , n2 − 1, to uniformly distribute the parent interval’s

mass by these subintervals. After this step is completed the subintervals
formed are [i(n1n2)−1, (i+ 1)(n1n2)−1], i = 0, 1, . . . , n1n2 − 1;

Step k: Generate an observation nk from N , independent from the previous
k− 1 observations of N . Split each interval from the previous step into nk
subintervals of equal length and use the multipliers m

(nk)
i , i = 0, 1, . . . , nk−

1, to uniformly distribute the parent interval’s mass by these subinter-
vals. The subintervals formed after this step are [i(n1n2 . . . nk)−1, (i +
1)(n1n2 . . . nk)−1], i = 0, 1, . . . , n1n2 . . . nk − 1.

The new measure µ results from applying the previous procedure infinitely.

An example of a family of multipliers that can be used in this type of
measure construction is

m
(n)
i =

2(i+ 1)

n(n+ 1)
i = 0, 1, . . . , n− 1 , (3)

when N = n. (Note that with the multipliers defined in (3) we do not get
m0 = m1 = 1/2 if N = 2 is observed.)

In order to illustrate how the measure is obtained we give a simple exam-
ple. Suppose that the random variable N has support on {2, 3} with p.m.f.
P[N = 2] = 1/4 and P[N = 3] = 3/4. Let us further assume that we observe
for the first two steps of the measure’s construction the sequence of divisors
(N1, N2) = (3, 2), where N1 and N2 are independent replicas of N . Using the
multipliers defined in (3), we get

m
(2)
0 =

1

3
and m

(2)
1 =

2

3
,

and

m
(3)
0 =

1

6
, m

(3)
1 =

1

3
and m

(3)
2 =

1

2
.

At step one we obtain the subintervals [0, 13 ], [ 13 ,
2
3 ] and [ 23 , 1], with masses 1/6,

1/3 and 1/2, respectively, and after step two the subintervals [0, 16 ], [ 16 ,
1
3 ], [ 13 ,

1
2 ],

[ 12 ,
2
3 ], [ 23 ,

5
6 ] and [56 , 1], with masses 1/18, 1/9, 1/9, 2/9, 1/6 and 1/3, respec-

tively. We should point out that when a measure of this type is being formed,
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one actually does not know which generator sequence of divisors (N1, N2, . . . )
is being used in the construction, and consequently which multipliers are being
used at each step.

In Figure 2 we show the measure obtained after 10 steps for two different
generator sequences, when working with the above random variable N . The
patterns clearly reveal that the first divisor was 2 in the left plot and 3 in the
right plot. In Figure 3 we show the effect of some permutations of a sequence of
divisors of length 10 on the measure’s construction (note that in this case there
are a total of 210 = 1024 possible permutations for the sequence of digits). As
we can see all four plots have different patterns.

Fig. 2. The measure obtained after 10 steps for two different generator sequences
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In the binomial and multinomial measures the multipliers used throughout
all steps are fixed in value and in number. In this new scenario each multiplier
should be regarded as a random variable, since the magnitude and number of
the multipliers used are directly determined by the distribution of N .

Let us go back to the example to see how this is the case. For the multipliers
defined in (3) we can have m0 = 1/3 or m0 = 1/6, with probability 1/4 and
3/4, respectively, and for this example there are 3 random multipliers that need
to be defined. If Mi denotes the random variable that represents the value of
the i-th random multiplier,

M0 =

{
1
3

1
6

1
4

3
4

, M1 =

{
2
3

1
3

1
4

3
4

and M2 =

{
0 1

2
1
4

3
4

. (4)

The expected values for the multipliers given in (4) are E[M0] = 5/24, E[M1] =
5/12 and E[M2] = 3/8. For an arbitrarily random variable N , the number of
random multipliers Mi will depend on the number of points where N has non
null mass.
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Fig. 3. The measure obtained after 10 steps for four different permutations of a
generator sequence
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In each step of this new multiplicative cascade we can also attach an ad-
dress (location) to each interval generated, as is done in the binomial and
multinomial measures (for more details on this subject see e.g. Ervertsz and
Mandelbrot [2]). However, given the way the measure is constructed, we can
have different intervals for the same address. In order to illustrate this situation
we indicate in Table 1 the intervals and corresponding addresses and masses
for the first two steps of all possible cases for (N1, N2) (in brackets we indicate
the probability of observing each sequence of length 2).

From Table 1 we observe that there is no one-to-one correspondence be-
tween address and interval, contrarily to what happens with the binomial and
multinomial measures. We also observe that intervals with the same address
do not have necessarily the same mass. Thus the definitions of coarse and local
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Table 1. Intervals, addresses and masses for all possible sequences (N1, N2)

(N1, N2) = (2, 2) ( 1
16 )

Interval [0, 14 ] [ 14 ,
1
2 ] [ 12 ,

3
4 ] [ 34 , 1]

Address 0.00 0.01 0.10 0.11

µ 1/9 2/9 2/9 4/9

(N1, N2) = (2, 3) ( 3
16 )

Interval [0, 16 ] [ 16 ,
1
3 ] [13 ,

1
2 ] [ 12 ,

2
3 ] [ 23 ,

5
6 ] [ 56 , 1]

Address 0.00 0.01 0.02 0.10 0.11 0.12

µ 1/18 1/9 1/6 1/9 2/9 1/3

(N1, N2) = (3, 2) ( 3
16 )

Interval [0, 16 ] [ 16 ,
1
3 ] [13 ,

1
2 ] [ 12 ,

2
3 ] [ 23 ,

5
6 ] [ 56 , 1]

Address 0.00 0.01 0.10 0.11 0.20 0.21

µ 1/18 1/9 1/9 2/9 1/6 1/3

(N1, N2) = (3, 3) ( 9
16 )

Interval [0, 19 ] [ 19 ,
2
9 ] [ 29 ,

1
3 ] [ 13 ,

4
9 ] [ 49 ,

5
9 ] [59 ,

2
3 ] [ 23 ,

7
9 ] [ 79 ,

8
9 ] [ 89 , 1]

Address 0.00 0.01 0.02 0.10 0.11 0.12 0.20 0.21 0.22

µ 1/36 1/18 1/12 1/18 1/9 1/6 1/12 1/6 1/4

Hölder exponents given in the literature can not be applied directly to this type
of measure.

We recall that the coarse Hölder exponent is defined as

αk(x) =
log(µ(I0.β1β2...βk))

log ε
, k = 1, 2, . . . , (5)

where µ(I0.β1β2...βk) indicates the measure of the interval x = I0.β1β2...βk having
address 0.β1β2 . . . βk and size (length) ε, with βi = 0, 1, . . . , b − 1 and b ≥ 2.
On the other hand, the local Hölder exponent is defined as

α(x) = lim
k→∞

αk(x) (6)

(i.e. for ε→ 0), if the limit exists.
However, expressions (5) and (6) can be generalized to accommodate this

new measure. All we have to do is to consider that the measure associated
with an address is the mean value of the masses of the intervals which can
have the address. This becomes clearer by examining Table 2 for the working
example. It is also clear from Table 2 that addresses that are permutations of
one another have the same mean mass (this remains true at any step).

The question now is how to determine the measure of a particular ad-
dress 0.β1β2 . . . βk, βi = 0, 1, . . . , i = 1, 2, . . . , k, which can have a multitude



Chaotic Modeling and Simulation (CMSIM) 1: 39–50, 2013 49

Table 2. Masses for all possible addresses obtained after 2 steps

Address (2,2) (2,3) (3,2) (3,3) Mean mass

0.00 1/9 1/18 1/18 1/36 25/576

0.01 2/9 1/9 1/9 1/18 25/288

0.10 2/9 1/9 1/9 1/18 25/288

0.11 4/9 2/9 2/9 1/9 25/144

0.02 0 1/6 0 1/12 5/64

0.20 0 0 1/6 1/12 5/64

0.12 0 1/3 0 1/6 5/32

0.21 0 0 1/3 1/6 5/32

0.22 0 0 0 1/4 9/64

of intervals attached to it, if one does not know which generator sequence
(N1, N2, . . . , Nk) was used? As Table 2 suggests, we use the random multi-
pliers expectations. We can prove that the address 0.β1β2 . . . βk has expected
measure

µE(0.β1β2 . . . βk) = E(Mβ1
)E(Mβ2

) . . .E(Mβk),

which does not depend on the generator sequence. We remark that the only
kind of dependence that exists between the generator sequence and the expected
measure is through the influence of N on the random multipliers Mi. For
example, both addresses 0.01 and 0.10 have expected measure E(M0)E(M1) =
25/288.

The generalization of the definitions (5) and (6) to this new measure is now
straightforward. For the generalized coarse Hölder exponent we have

αk(0.β1β2 . . . βk) =
log(µE(0.β1β2 . . . βk))

log

(
E
[(∏k

i=1Ni

)−1]) ≈ − log(µE(0.β1β2 . . . βk))

k log(E[N ])

and for the generalized local Hölder exponent,

α = lim
k→∞

αk(0.β1β2 . . . βk) ≈ − lim
k→∞

log(µE(0.β1β2 . . . βk))

k log(E[N ])
,

if the limit exists. Note that
(∏k

i=1Ni

)−1
represents the (random) length of

the intervals at step k.

On the other hand, if at step k we randomly select an address 0.β1β2 . . . βk,

P[βi = j|N = n] =
1

n
, j = 0, 1, . . . , n− 1,
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and from applying the law of total probability, it follows that

P[βi = j] =

∞∑
n=2

P[βi = j|N = n]P[N = n], j = 0, 1, . . . . (7)

Therefore, randomly selecting an address in this case corresponds to generat-
ing a sequence β1β2 . . . βk, where the βi’s satisfy (7). Considering again the
example, we get P[βi = 0] = P[βi = 1] = 3/8 and P[βi = 2] = 1/4.
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