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Abstract. In this paper, we investigate the behaviors of the Belief Propagation al-
gorithm considered as a dynamic system. In the context of LDPC (Low Density
Parity-Check) codes, we use the noise power of the transmission channel as a poten-
tiometer to evaluate the different motions that the BP can follow. The computations
of dynamic quantifiers as the bifurcation diagram, the Lyapunov exponent and the
reconstructed trajectory enable to bring out four main behaviors. In addition, we
propose a novel measure that is the hyperspheres method, which provides the knowl-
edge of the time evolution of the attractor size. The information collected from these
different quantifiers helps to better understand the BP evolution and to focus on the
noise power values for which the BP suffers from chaos.
Keywords: LDPC, iterative map, chaos, Lyapunov exponent, bifurcation diagram.

1 Introduction

The channel coding is a research field whose purpose is to protect an infor-
mation to transmit from environmental disturbances. The first step is the
encoding of the information, a procedure in which the information, modeled
as a sequence of k bits u1, . . . , uk, is mapped to a larger sequence of N bits
x1, . . . , xN . The map consists in artificial correlations called constraints or
parity-check equations. In [1] are introduced the Low-Density Parity-Check
(LDPC) codes which are a widespread technique to encode the information.
Such a code can be represented by a Tanner graph [2], a graphical represen-
tation which turns out to be very useful in the second step, the decoding. In
this part, the bits transmitted though a random noisy channel are iteratively
handled by a decoding algorithm to create an associated output sequence of
N bits that verify the whole set of parity-check equations and that must be
as close as possible to the input sequence. One of the most famous decoding
algorithm is the Belief Propagation (BP) [3] used to solve inference in graphical
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models. Extensively studied in [5,6], it is deemed to be the optimal message-
passing algorithm in the case the Tanner graph of the LDPC code is loopfree.
However, in most cases the Tanner graph is not loopfree [7] that involves that
the BP becomes suboptimal. Moreover, the BP presents some complex behav-
iors in terms of the noise power of the transmitted channel, as periodic and
chaotic motions [9]. Along the whole paper, we present some measures to bring
out these different behaviors. The paper is organized as follows: in the second
section are presented preliminaries about the LDPC codes and the BP, in the
third section we present the dynamic environment of the BP, the measures to
identify the behaviors and the associated results.

2 Preliminaries

2.1 Graphical Model – LDPC codes

We consider a set of N hidden binary random variables X = {X1, . . . , XN}
whose global state is denoted by x = [x1, . . . , xN ]. To each variable Xi is
associated an observation yi that provides a prior information on the state
of Xi given that the a posteriori distribution on Xi is proportional to the
likelihood:

p(xi|yi) ∝ p(yi|xi)

In the digital communications area, the hidden variables play the role of bits to
transmit through a noisy channel, the observations represent the data collected
at the output at the channel. These data are used to compute x̂ = [x̂1, . . . , x̂N ]
the estimate of the input sequence x, as it is shown on the figure 1.

xi

ni ∼ N (0, σ2)

⊕
yi D x̂i

Fig. 1. Digital communication pattern: the channel is an additive Gaussian channel
of power σ2, D is the esttimation block that provides x̂

To ensure reliable communications is included the use of an LDPC code. An
LDPC code is built by a set of M constraints C = {C1, . . . , CM} usually called
parity-check equations. The value of the constraint Cj is computed by the set
of variables mapped by Cj , namely its neighborhood Nj such that:

cj =
∑

Xi∈Nj

xi

where the sum is computed over the Galois field GF(2). The variables and the
parity-check equations are respectiveley associated to the variable nodes and
the check nodes of the graphical representation of the LDPC code, called the
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Tanner graph G = (X ∪C, {eij}). The check node Cj and the variable node
Xi are linked by an edge eij if Xi ∈ Nj . We define the neighborhood Ni of
the variable node Xi as the set of check nodes that map Xi. An example of a
Tanner graph is displayed on the figure 2.

X1

X2 X3

X4

X5 X6

X7

variable node

observation

check node

correlation
edge

Fig. 2. Tanner graph of the Hamming code (N = 7)

2.2 Message-passing

The BP is an algorithm that helps to solve inference in graphical models. More
accurately, it provides estimates {bi(xi)}i of the posterior marginal distribu-
tions of the variables, called beliefs. From these trial distributions can be
extracted an estimate of x such that:

x̂ =

N⋃
i=1

arg max
xi

bi(xi)

To obtain the beliefs, the BP passes messages iteratively between the variable
nodes and the check nodes, according to their neighborhood dependence. An
edge eij carries two different messages, each oriented in a specific way:

• the message from Cj to Xi is: n
(k)
ji (xi) = fji({m(k−1)

xy }(x,y))
• the message from Ci to Cj is: m

(k)
ij (xi) = gij({n(k)yx }(x,y), li(xi))

where fij and gji are update functions whose expressions are detailed in [2],
and li(xi) is the likelihood computed from the observation yi. To give an idea of
the analytic expressions of these functions, a message from a node A to a node
B, whatever their nature, is somehow the geometric average of the messages
incoming on A. The output of the BP is a set of beliefs that are computed from
the same principle [2]: bi(xi) is someway the geometric average of the messages
incoming on the variable node Xi in the state xi.

2.3 Topological troubles

The BP has been introduced by Pearl [3] as an algorithm to solve inference on
trees and polytrees. For such graphical model, this algorithm is surely optimal.
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Though, the most of the LDPC codes have basically non tree-like topology,
their Tanner graphs are full of loopy structures. This drawback is unavoidable
because the check nodes need to be interwoven to make the LDPC code robust
against the channel noise. Accordingly, the BP turns out to be suboptimal in
most cases. In [7] and [8] the BP is investigated to bring out some convergence
conditions depending on the topology of the Tanner graph, it was found that
short loops are the most harmful and that the convergence of the BP must
be unreachable if the LDPC code contains at least two loops. This conclusion
brings the fact that mots LDPC codes cannot been decoded perfectly by the
BP. As a result are shown on the figure 3 two Bit Error Rates (BER) according
to the Signal-to-Noise Ratio (SNR) on loopy codes of the same length N : one
contains only large loops and the other only short loops.

0 2 4 6 8 10
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10−2

10−1

100

SNR

B
E
R

short loop

large loop

Fig. 3. BER of the BP – Difference between short loops and large loops

The BER of the code with large loops is less damaged than the one wih short
loops, that confirms the previous conclusion. This can be easily understood
given that the BP is a message-passing algorithm: short loops have short term
effects because only a small number of iterations is necessary to develop their
harmful effect, contrary to the large loops.

Despite the practical interest of such an estimator, the BER does not bring
the whole information about the behavior of the BP in case of loopy LDPC
codes. On the figure 4 is displayed the evolution of the BER along the iterations
according to four SNR values given a particular noise realization on the Tanner
code [10] of length N = 155. It appears obvious that the BP suffers from great
divergence depending on the SNR. The rationale behind these results is that
the BP does not behave trivially as it could be wrongly thought given the BER.

In other terms, the SNR plays the role of a parameter that wields great influence
on the behavior of the BP. Therefore, it appears necessary to investigate the
BP as a dynamical system, a work presented in the next section.
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Fig. 4. BER of the BP on the Tanner code for four SNR values

3 Dynamics

In this section is presented an experimental study that brings out the dynam-
ics of the BP algorithm according to the evolution of the SNR. To this end
is introduced a toolbox including four estimators, each one carrying relevant
information on the system. For each of them is presented the computation
method, then a few results and finally the properties it reveals concerning the
BP. The goal is to get information about:

• the SNR values that correspond to blatant changes in the behavior of the
BP,

• the description of the different attractors the BP encounters,
• the size of these attractors.

Introducing the term attractor implies the definition of a state space. In the
current study, such a space is built in such a way that each message nji defines
a state variable. However, such a state space is of very high number of dimen-
sions, given that a Tanner graph in practice could contain tens of thousands
edges. Fortunately, experiments show that it is quite equivalent to consider the
beliefs as pseudo-state variables, reducing dramatically the number of dimen-
sions. Finally, in the following, all estimators are measured in the pseudo-state
space such that each state variable is associated to a unique belief.

3.1 Bifurcation diagram

First of all, it appears necessary to go a little more deeply in the study of the
figure 4. One would note that the BERs suffer from a threshold phenomenon,
especially for SNR = 2.25 dB. This is actually an unfortunate consequence of
the decoding process D, see figure 1, that thresholds the beliefs such that:

∀Xi ∈ X, bi(xi) ∈ [0, 1] 7−→ x̂i ∈ {0, 1}

To extract relevant information concerning the BP, it is recommended to con-
sider estimators that faithfully render the conduct of the BP. To this end, it
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appears well suited to replace the BER by a smoother function, namely the
mean square beliefs introduced in [9]:

∀k ∈ {1, . . . ,K}, E(k) =

√√√√ 1

N

N∑
i=1

(
b
(k)
i (xi)

)2
(1)

where the values {xi}i are assumed to be the right ones and K is an arbitrary
number of iterations. Its properties are partly equivalent to the BER ones in
the sense that:

• E(k) = 1: the BP has perfectly decoded,
• E(k) = 0.25: the BP does not provide any relevant knowledge on the

variables,
• E(k) = 0: the BP completely failed.

Experiments show that E(k) lives between the two first situations, furthermore
its evolution along the iterations is indeed softer than the BER, see figure 5.
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Fig. 5. Mean square beliefs of the BP on the Tanner code for four SNR values

On this figure appears the strong dependency of the BP dynamics on the SNR,
the algorithm does not converge for all values. It is either stuck in steady states
for SNR ∈ {1.00 dB, 3.20 dB} or divergent for SNR ∈ {2.25 dB, 2.92 dB}. To
draw an evolution of the mean square beliefs according to the SNR comes out
the use of the bifurcation diagram. Instead of displaying the whole evolution of
E(k) along the iterations we only pick up its final value E(K). Theoretically,
in [9], at K the BP is expected to have reached a steady state. In practice, as
shown by the figure 5, it is absolutely not systematic. For computation time’s
sake, the steady state is redefined as the permanent evolution after an arbitrary
number of iterations. On the figure 6 are displayed the bfurcation diagrams of
the BP for four noise realizations that we call Error Events (EE).
The bifurcation diagrams reveal critical SNR values that blatantly change the
BP conduct. It appears five particular behaviors of E(K):
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Fig. 6. Bifurcation diagrams of the BP

• (B1) smooth increasing,
• (B2) oscillations,
• (B3) erratic evolution,
• (B4) convergence jumps,
• (B5) convergence.

At this point appears a clue about the chaotic behavior of the BP (B3), even
though are needed other observations to confirm it. Despite the order pattern
is common to the error events, the critical SNR values are not the same. Ac-
tually it is strongly possible that most noise realizations lead to quite similar
SNR critical values, the current difference we observe should correspond to the
variance of the estimator, given that the number of simulations is quite small.
A suited method to solve this problem would consist in average on a set of nu-
merous noise realizations to obtain a mean bifurcation diagram with relevant
variance. However, it appears quite impossible to conduct such a process. The
reason comes out of the efficiency of the BP in terms of error correction, the
error events that lead to non trivial behaviors of the BP along the SNR corre-
sponds to rare events. Other regular error events imply very fast convergence
of the BP to the perfect estimate. On the figure 7 is displayed the BER of the
Tanner code decoded by the BP.
This figure makes appear that around SNR = 2.50 dB, for example, only one
error event among a thousand will lead to wrong decoding by the BP, making
the average computation of the bifurcation diagram quite untractable. Despite
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Fig. 7. BER of the Tanner code decoded by the BP

this drawback, a very important point raised up from extensive and numerous
experiments is that the order of the five behaviors brought out previously is
always the same, whatever the error event provided that it implies non trivial
behaviors, and whatever the LDPC code. Therfore it is also always possible
to extract four critical SNR values that share the whole range in five intervals
corresponding with the behaviors B1, B2, B3, B4 and B5.

3.2 Lyapunov exponents

Given the critical SNR values, the next step is to find out the kind of the
behaviors that were brought out, even though a few clues are given by the
bifurcation diagram. To this end, we investigate the sensitivity of the BP
to very small changes in the initial conditions, i.e. the likelihoods, by the
use of the famous Lyapunov exponent. The computation of this estimator is
made according to the method exposed in [12,11]. First of all we evaluate at
each iteration k ≤ K the Euclidean distance dk between two initially close
trajectories. Then we estimate the Lypaunov exponent λ as the slope of the
least square regression line of ln dk along the iterations. Actually this method
comes from the observation that for strongly divergent behavior, dk follows an
exponential law whose parameter is λ, as we can see on the figure 8.
On the figure 9 are displayed the Lyapunov exponents averages around the
four error events introduced previously according to the Euclidean distance.
The sign of λ reveals the behavior of the system around the corresponding
initialization of the trajectories: λ ≥ 0 means the trajectories have moved
away one from the other, which is an evidence of a chaotic behavior,λ ≤ 0
means the trajectories have got closer, which is an evidence of a convergent
behavior to a small sized volume of the state space. This volume is reduced
to a fixed point if and only if λ → ∞. When λ crosses the x-axis the system
suffers from a bifurcation meaning that the algorithm has changed of conduct,
as it was observed about the bifurcation diagram. To each SNR interval we
obtain conclusions from λ:
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Fig. 8. Evolution of the log-distance between initially close trajectories for the BP,
SNR = 2.90 dB, EE1. The evolution is exponential in k ∈ [0, 200]. For k ≥ 200
appears a stair due to the compacity of the state space.

• (B1) λ = 0: the trajectories are quite close but never merge

• (B2) λ = cst > 0: the trajectories are moving away at a constant rate

• (B3) λ > 0, λ 6= cst: erratic evolutions of the trajectories, evidence of chaos

• (B4) λ getting lower: the trajectories begin to move closer

• (B5) λ→ −∞: the trajectories merge

It is commonly accepted that the Lyapunov exponent provides a reliable signa-
ture of the behavior of any dynamical system. Therefore we can assert that the
BP encounters chaos in the SNR interval B3 that is not of neglectible length.
In addition, it appears that this chaos appears and disappears quite suddenly
in terms of the SNR, looking at the slope of λ. It means that practically we
can easily define a chaotic interval of the SNR for any LDPC code.

3.3 Reduced trajectory

The previous estimators revealed properties of the BP according to the SNR. A
convenient approach to enforce these observations is to visualize the dynamical
system in its state space.

However, our human skills prevent us from directly observing a system whose
number of dimensions is several hundreds or even thousands, that is the case
currently. To circumvent this undesired problem, we define a reduced 3-dimensional
pseudo-state space and then a reduced pseudo-trajectory. To this end we make
use of the state space reconstruction [11]. It consists in constructing a state
space of arbitrary number of dimensions given a one dimensional map com-
puted from the state variables. In this investigation, a known map of such
property is the mean square beliefs. Firstly, the method aims to compute E(k)
at each iteration k to get a sequence E = [E(k)]0≤k≤K . Secondly we map this
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Fig. 9. Lyapunov exponents of the BP on the Tanner code

one dimensional sequence to a three dimensional sequence:

E 7−→ Ẽ =

 E(0) E(1) E(2)
...

...
...

E(K − 2) E(K − 1) E(K)


On the figure 10 are displayed a few reduced trajectories of the BP for typical
values of the SNR deduced from the previous bifurcation diagram. On the first
figure is exhibited at SNR = 2.10 dB a convergence of the trajectory toward a
small size attractor, as it was expected according to the corresponding λ.
By increasing the SNR between 2.19 dB and 2.49 dB the trajectory transforms
to a limit cycle. The thickness of the trajectory along this limit cycle increases
as the SNR is getting greater up to 2.50 dB. At the same time this limit cycle
interleaves with other limit cycles, the BP encounters a sequence of period
doubling bifurcations, displayed on the figure 11 with two interleft cycles.
Such a phenomenon is a typical route to chaos [11], a behavior observable from
SNR = 2.51 dB. There is not any periodic evolution or fixed point convergence
anymore, as it is displayed for 2.70 dB. When the SNR reaches 2.99 dB the
trajectory collapses to a single point, meaning that the BP has correctly con-
verged. Such behaviors are similar to the results of other experiments led on
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Fig. 10. Reduced trajectories for the BP on the Tanner code for the error event EE1
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Fig. 11. Reduced trajectory for the BP on the Tanner code with SNR = 2.40 dB

other error events, that enforces the common dynamics between different noise
realizations.

3.4 Hyperspheres method

Telling an attractor is chaotic is not enough to describe the situation of the
BP. The assumed chaotic attractor can have different shapes and sizes. These
properties are really important because they are the signaure of the practical
unstability. A small chaotic attractor would be less troublesome than a large
one, because the corresponding beliefs would be less eventful. In other terms,
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we need to reveal the chaos intensity of the BP, somehow given by the size of
an attractor in the pseudo-state space.

Computing such a quantity turns out to be a quite hard task because it de-
pends on the shape of the attractor. Assumed that we find this shape, nothing
ensures that it is part of our knowledge, contrary to the regular forms whose
analytic expressions of the volumes are known, as the spheres, the ellipsoids,
the hypercubes... To circumvent this problem, we establish a procedure that
provides the hypersphere circumbscribed to the pseudo-trajectory. Obviously
the whole trajectory is not taken into account partly because it is important
to get rid of the transcient.
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Fig. 12. Hyperspheres of radius Rk centered on Bk, the mean point of the pseudo-
trajectory {Tk−W

2
, . . . , Tk+W

2
}. The red points are inside the hypershere.

As shown on the figure 12, the method consists in:

• drag a temporal window IW (k) of arbitrary length W along the trajectory
according to the iteration k,

• for each k extracting Bk the mean point of the pseudo-trajectory in IW (k),
• searching for Tk the furthest point of Bk inside IW (k).

The vector
−−−→
BkTk is of length rk the radius of the hypersphere circumscribed

to the pseudo-trajectory inside IW (k). A part of the estimator is the evolution
of rk along the iterations. The difficulty lies in the experimental search for
the length W such that the attractor is absorbed into the hypersphere. For
the moment, only numerous experimental attempts help to find the well suited
W . We present on figure 13 the evolution of rk for the BP subjected to strong
chaos according to the previous estimators.
We see that the values of the radii are of the same magnitude, even though
they are not strictly equal. Nevertheless, in the current pseudo-state space
of N = 155 dimensions, the hypervolume of the hypersphere is proportionnal
to RN

k . Then even a small difference between two radii involves a non ne-
glectible difference, a fact that we will see later. Another observation is the
fact that these radii are not constant, meaning that the hyperspheres shake.
Due to this phenomenon the radius is often almost doubled as for EE2 about
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Fig. 13. Hypersphere radius Rk for chaotic attractors according to k

k ∈ {209, 298}. This is a consequence of the BP unstability. To get a global
overview of the attractor size inside the state space we display on figure 14 the
average steady value R̂K for each error event according to the SNR. According
to the previous estimators, it appears that the maxima of the radii are reached
when the BP is trapped into chaotic attractors, and the minima are reached
as soon as the algorithm left these attractors. In addition, a quite interesting
observation is that R̂K is smoothly increased while the SNR lies within the
limit cycle interval, meaning that these limit cycles are getting larger as the
SNR is increased.
In the mean time, the Lyapunov exponent highlighted the information that
initially close trajectories were moving away at a constant rate. Therefore
as the limit cycle is growing, the stability of the BP does not really change
provided the SNR is less than the critical values that leads to chaos. In other
terms the divergence speed of two initially close trajectories is not changed even
if the radius of the limit cycle increases, that is a quite surprising observation.

Finally it appear suitable to compare the values of the hyperspheres volumes
so as to highlight their difference. In the table 3.4 are given the ratios between
the maximum radii and the associated ratios between their corresponding hy-
pervolumes, given that :

• R1 , max R̂k(EE1) = 2.6561 reached at SNR = 2.75 dB,
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Fig. 14. Average hypersphere radius R̂K for chaotic attractors according to the SNR

• R2 , max R̂k(EE2) = 1.7139 reached at SNR = 1.08 dB,
• R3 , max R̂k(EE3) = 1.7954 reached at SNR = 1.65 dB,
• R4 , max R̂k(EE4) = 2.6684 reached at SNR = 1.03 dB.

These tables raise the dramatical difference between the size of the chaotic
attractors.
As an example, EE4 involves a radius only 1.5569 times larger than the radius
involved by EE2 but V4 ≈ 1029V2 which is a very large difference. On the
contrary error events whose radii are very close, as EE1 and EE4 do not
differenciate much in terms of their corresponding hypervolumes. Finally, it
appears a quite large diversity of chaotic attractors for the BP. This diversity
lies within the intensity of the chaos, represented by the hypervolumes. This
observation indicates that for example EE2 entails a less chaotic attractor than
EE4, and that EE1 implies a much more chaotic attractor than EE2. Such
comparisons provide somehow a reliability coefficient on the noise realizations,
that is of very important practical interest.

4 Conclusion

In this paper, we address the dynamics issue of the BP by the use of known and
new estimators from an experimental point of view. We brough out that the BP
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= 1.4862 .

(b) Ratios between hyperspheres volumes

EE1 EE2 EE3 EE4

EE1 .
V1

V2
= 3.0788× 1029 V1

V3
= 2.3082× 1026 V1

V4
= 0.4894

EE2
V2

V1
= 3.2588× 10−30 .

V2

V3
= 7.4528× 10−4 V2

V4
= 1.5826× 10−30

EE3
V3

V1
= 4.2833× 10−27 V3

V2
= 1.3499× 103 .

V3

V4
= 2.1005× 10−27

EE4
V4

V1
= 2.0368

V4

V2
= 6.3156× 1029 V4

V3
= 4.6987× 1026 .

follows a systematic pattern when the decoding is not trivial: convergence to a
small-sized attractor, locking in a limit cycle, chaos and convergence to a fixed-
point. Such a property turns out to be practically relevant because it is common
to all LDPC codes. In addition it provides the critical values of the SNR for
which the BP could present complex behaviors. We investigated the chaos by
the use of new estimators to highlight the diversity of the chaotic attractors that
the BP would encounter. By the use of the hyperspheres method we introduced
the notion of chaos intensity that highlighted a novel notion of reliability on
the channel noise realizations, and to some extent on the SNR values and the
LDPC codes. Finally we have introduced a quite efficient toolbox for the study
of the BP that can be adapted to any decoding algorithm provided its output
can be computed as probability distributions.
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