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Abstract.  The Newtonian and special-relativistic predictions for the position 

and momentum probability densities of a model low-speed (i.e., much less than 

the speed light) dynamical system are compared. The Newtonian and special-

relativistic probability densities, which are initially the same Gaussian, are 

calculated using an ensemble of trajectories. Contrary to expectation, we show 

that the predictions of the two theories can rapidly disagree completely. This 

surprising result raises an important fundamental question: which prediction is 

empirically correct? 

 

INTRODUCTION 

 
It is conventionally believed [1-3] that the predictions of special-relativistic 

mechanics for the motion of a dynamical system are well approximated by the 

predictions of Newtonian mechanics for the same parameters and initial 

conditions if the speed of the system v is low compared to the speed of light c (v 

<< c). However, contrary to expectation, it was shown in recent numerical 

studies [4-8] that the Newtonian prediction for the trajectory of a low-speed 

dynamical system can rapidly disagree completely with the special-relativistic 

prediction. 

 

In this paper, we extend the studies in [4-8] from the comparison of single-

trajectory predictions to the comparison of the probability-density predictions 

calculated from an ensemble of trajectories. The model system we study here is 

the periodically delta-kicked system previously studied in [4]. Details of the 

model system and the probability-density calculations are presented next, 

followed by the results and concluding remarks. 

 

Model System 

 
The periodically delta-kicked system [4] is a one-dimensional Hamiltonian 

system where a particle is subjected to a sinusoidal potential that is periodically 

turned on for an instant. The Newtonian equations of motion for this system are 

easily integrated exactly [9,10] to yield the well-known standard map, which 
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maps the dimensionless scaled position X and dimensionless scaled momentum 

P from just before the nth kick to just before the (n+1)th kick:  
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where n = 1,2,…, and K is a dimensionless positive parameter. 

 

The special-relativistic equations of motion are also easily integrated exactly, 

producing a mapping known as the relativistic standard map [11,12] for the 

dimensionless scaled position X and dimensionless scaled momentum P from 

just before the nth kick to just before the (n+1)th kick: 
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where n = 1,2, …, and β, like K, is a dimensionless positive parameter. 
 

The initial probability density is a Gaussian for both position and momentum 

with means <X0> and <P0>, and standard deviations σX0 and σP0: 
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In each theory, the probability density is calculated using an ensemble of 

trajectories, where each trajectory is time-evolved using the map. The 

probability density is first calculated using 10
6
 trajectories, where the accuracy 

of the double-precision calculation is determined by comparison with the 

quadruple-precision calculation. The probability density is then recalculated 

using 10
7
 trajectories with the same accuracy determination. Finally, the 

accuracy of the probability density is determined by comparing the 10
6
-

trajectories calculation with the 10
7
-trajectories calculation. 

 

Results 

 
In the example presented here, the means and standard deviations of the initially 

Gaussian probability density are <X0> = 0.5, <P0> = 99.9 and σX0 = σP0 = 10
-10
. 

The parameters of the maps are K = 0.9 and β = 10-7. 
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Figures 1, 2 and 3 show that the Newtonian and special-relativistic position and 

momentum probability densities evolve approximately as Gaussians with 

increasing widths up to at least kick 114. 

 

 
Figure 1. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 80. 

 

Figure 1 shows that, for both position and momentum, the Newtonian and 

special-relativistic probability densities are still close to one another on the 

whole at kick 80. The centers of the Newtonian and special-relativistic 

probability densities are displaced from each other in the figure because of the 

very small scale required for the horizontal axis to see the very narrow densities. 

 

By kick 89, Figure 2 shows that, for both position and momentum, although the 

centers of the Newtonian and special-relativistic probability densities are still 

close, the Newtonian probability density is significantly wider and shorter than 

the special-relativistic probability density. 
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Figure 2. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 89. 

 

At kick 114, Figure 3 shows that not only are the widths and heights of the 

Newtonian and special-relativistic probability densities completely different for 

both position and momentum, the centers of the position probability densities 

are also completely different. 

 

In summary, the three figures show that, although the mean speed of the system 

remains low, only 0.001% the speed of light, the Newtonian position and 

momentum probability densities disagree completely with the corresponding 

special-relativistic probability densities from kick 89 onwards. 
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Figure 3. Comparison of Newtonian (grey) and special relativistic (black) 

position (top plot) and momentum (bottom plot) probability density for kick 

114. 

 

Concluding remarks 

 
We have shown that, contrary to expectation, the Newtonian and special-

relativistic probability-density predictions for a low-speed dynamical system 

can rapidly disagree completely. 

 

Our result raises an important fundamental question: When Newtonian and 

special-relativistic mechanics predict completely different probability densities 

for a low-speed dynamical system, which of the two predictions is empirically 

correct? Since special relativity has survived many experimental tests in the 

high speed regime, it would be very strange indeed if the theory is invalid for 

low speed motion. If special relativity is also empirically correct at low speed as 

we expect, then it must be used, instead of the standard practice of using 

Newtonian theory, to correctly calculate the probability density for a low-speed 

dynamical system. 
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