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Abstract: A statistical theory is proposed for initial gravitational interactions of 

particles inside the forming cosmological bodies (molecular clouds), which have fuzzy 
contours and are represented by spheroidal forms. The equation for quasi-equilibrium 
gravitational compression of a spheroidal body in a vicinity of its mechanical equilibrium 
is considered initially. According to the proposed model of quasi-equilibrium 
gravitational compression an antidiffusion mass flow arises inside a slowly compressible 
gravitating spheroidal body. In this connection, the notions of antidiffusion mass flow 
density as well as antidiffusion particle velocity in a spheroidal body are introduced. The 
equations for calculating the partial derivative of the antidiffusion velocity (in the cases 
of absence or presence of an ordinary hydrodynamic velocity) as well as the complete 
derivative of the common (hydrodynamic plus antidiffusion) velocity with respect to 
time are obtained. As shown in this work, these equations are more general than the 
analogous equations derived in Nelson’ stochastic mechanics. They are used for the 
derivation of nonlinear time-dependent Schrödinger-like equation describing a 
gravitational formation of a cosmological body. 
Keywords: Molecular clouds, Initial gravitational interactions, Spheroidal bodies, Quasi-
equilibrium gravitational compression, Antidiffusion mass flow, Antidiffusion velocity, 
Nonlinear Schrödinger-like equation. 
 
1    Introduction 

A statistical theory of slowly compressible gravitating cosmological body 
formed by a numerous of interacted particles isolated from an influence of 
external fields and bodies has been proposed in the works [1–6]. Within 
framework of this theory, the forming cosmological bodies are shown to have 
fuzzy contours and are represented by spheroidal forms (unlike ordinary 
macroscopic bodies having distinct contours). In this connection a new notion of 
theoretical mechanics called a spheroidal body has been introduced in the works 
[1–6] (in addition to the well-known notion as mass point). A mass point  
does not possess any geometrical sizes, on the contrary, a spheroidal body with 
mass 

0m

M  has infinitely long sizes (in the physical sense of infinity, of course). 
By analogy with the well-known dilemma “particle–wave” (solved by means of 
corpuscular–wave dualism principle in the case of quantum mechanical 
particles) it is appropriate to consider a new concept “mass point–spheroidal 
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body”. Let us note that a cosmological  body can be considered as a mass point 
at long distance of its observation or as a spheroidal body at short distance 
respectively. 

In such spheroidal bodies, under the condition of critical values of mass 
density (or parameter of gravitational compression α  [5, 6]) the centrally 
symmetric gravitational field arises. The tension, force, potential and energy of 
the gravitating spheroidal body have been determined to be of probability 
character [1, 2]. It has been pointed out that a spheroidal body has a clearly 
outlined form if the potential energy of gravitational interaction of its particles is 
sufficiently great and the body’s mass itself is relatively small. Obviously, the 
spheroidal body (like the well-known objects in the theoretic physics as a single 
mass point, an absolutely rigid body etc.) is an idealized notion. 

A process of slow-flowing-in time initial gravitational contraction of a 
spheroidal body has been investigated [3, 7]. Within framework of model of 
this process, the equations have been derived for description of a slow-flowing 
quasi-equilibrium gravitational compression of a spheroidal body in a vicinity 
of unstable mechanical equilibrium (initial and quasi-equilibrium) state [3, 7]. 

This paper considers the slow-flowing process of an initial gravitational 
condensation of a spheroidal body leading to origin of its gravitational field. 
The process of initial quasi-equilibrium gravitational compression of a 
spheroidal body in space within framework of the proposed “vibrating strainer” 
model can be interpreted on the basis of Wiener process in a space-frequency 
domain [8–10]. 

Recently L. Nottale [11, 12] has developed a new theory of the scale 
relativity. In Nottale’s theory, both direct and reverse Wiener processes are 
considered in parallel; that leads to the introduction of a twin Wiener (backward 
and forward) process as a single complex process [11, 12]. For the first time 
backward and forward derivatives for the Wiener process were introduced 
within framework of statistical mechanics of Nelson [13, 14]. Both Nelson’s 
statistical mechanics and Nottale’s scale relativistic theory investigate families 
of virtual trajectories which being continuous but nondifferentiable. The 
important point in Nelson’s works [13, 14] is that a diffusion process can be 
described in terms of a Schrödinger-type equation, with help of the hypothesis 
that any particle in the empty space, under the influence of any interaction field, 
is also subject to a universal Brownian motion (i.e. from the mathematical view-
point, a Markov–Wiener process) [15] based on the quantum nature of space-
time in quantum gravity theories or on quantum fluctuations on cosmic scale 
[16–18]. 

In the previous works [1–6], it was supposed that a weakly gravitating 
spheroidal body is isolated from influence of other fields and bodies, it is 
homogeneous in its chemical structure and has the temperature close to the 
absolute zero. In this paper we accept the same methodology supposing that the 
following assumptions are used: 

1. The spheroidal body under consideration is homogeneous in its chemical 
structure, i.e. it consists of  identical particles with the mass . N 0m
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2. The spheroidal body is not subjected to an influence of external fields and 
bodies. 

3. The spheroidal body is isothermal and has temperature T  close to the 
absolute zero, besides TT <deg , where T  is a 

degeneration temperature [19],  is the Planck’s constant,  is the 
Boltzmann’s constant, n  is a concentration of particles. 

3/2
0

2
deg )k/( nmh B=

h Bk

4. The spheroidal body is weakly gravitating, i.e. it occurs in a state close to 
a state of instable mechanical equilibrium (when a hydrodynamic mass flow is 
absent though a weak mass flow takes place [20, 21]), therefore the process of 
gravitational contraction (compression) appears slowly developing in time (the 
case of unobservable velocities of particles composing the spheroidal body [4, 
22]). 

In compliance with these requirements, an attempt to derive a nonlinear 
equation describing a gravitational formation of a cosmological body based on 
model of  self-organizing processes into a spheroidal body is made in this paper. 
 
2    The density of antidiffusion mass flow and antidiffusion velocity 
into a slow-flowing gravitational compressible spheroidal body 

As shown in the papers [3, 6], the dynamics of a slowly evolving process of 
initial gravitational condensation of a spheroidal body from an infinitely 
distributed substance is described by the antidiffusion equation: 

ρ
∂
∂ρ 2)( ∇−= t

t
G ,   (1) 

where ρ  is a mass density of the spheroidal body and 

dt
dt α

α
⋅=

22
1)(G     (2a) 

is a gravitational compression function, generally speaking (or a gravitational 
compression coefficient in some particular cases [3, 7]), α  is a parameter of 
gravitational compression (slowly changing in time ), besides t 0>α  [1–7]. 
The solution of Eq. (1) gives us the mass density function of a non-rotating 
spheroidal body: 

( )
2

2
)(

0 )(,
rt

ttr
α

ρρ
−

= e ,  (2b) 

where 
3/ 2

0
( )( )

2
tt M αρ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, M  is a mass of the spheroidal body, r  is a radial 

coordinate. 
We are going to use the general equation (1) of the slow-flowing 

gravitational compression; for this we shall rewrite it taking into account that 
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gravitational compression function  does not depend on the space variable 
r, therefore: 

)(tG

( ) ( ρρ
∂

)∂ρ grad)()( tt
t

GdivG −=∇−∇= ,  (3a) 

whence 

( 0grad)( =+ ρ
∂

)∂ρ t
t

Gdiv .   (3b) 

The relation (3b) reminds completely the continuity equation expressing the 
law of conservation of mass in a nonrelativistic system [23]: 

0=+ j
t

r
div

∂
∂ρ

,    (4a) 

where j
r

 is a continuum flow density. In this connection, the value in round 
brackets of Eq. (3b) has the sense of a mass flow density (like a conductive 
flow) j

r
 arising at the slow-flowing gravitational compression of spheroidal 

body [3, 4, 7]: 

ρgrad)(tj G=
r

.    (4b) 

For the first time, conductive (owing to diffusion or thermal conductivity) 
flows in dissipative systems were investigated by I. Prigogine in his works (see, 
for example, [20, 21]). As it follows from Eq. (4b) directly, there exists an 
antidiffusion mass flow density in a slowly compressible gravitating spheroidal 
body [3, 6]. Applying the equation of continuity (4a) to this antidiffusion flow 
density (4b) we obtain again the well-known linear antidiffusion equation (1). 
Since ρ  is a function of the space variable r , then in the spherical system of 

coordinates 
r
r

r
e

r r

r
r

⋅==
∂
∂ρ

∂
∂ρρgrad . Taking into account the fact that 

according to (2) the mass density ρ  is an exponentially decreasing function, 

then its derivative 0<
r∂

∂ρ
. Consequently, the direction of the antidiffusion 

flow density vector j
r

 is directly opposite to the basis vector rer , i.e. the vector 

j
r

 is directed to the spheroidal body center. 
Like the particle momentum operator ∇= hip̂  in the quantum mechanics 

[24–26], we can introduce from Eq. (4b) a velocity operator in the case of 
unobservable velocities of particles composing a spheroidal body [4, 22]: 
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∇= )(ˆ tv G ,    (5) 

i.e. is the operator of unobservable antidiffusion velocity. Taking into account 
this Eq. (5) the antidiffusion mass flow density (4b) of slow-flowing 
gravitational contraction of spheroidal body (with unobservable velocities of 
particles) can be written as follows [4, 22]: 

v̂

ρvj ˆ=
r

.     (6) 

According to Eq. (6) the continuity equation (4a) takes the form: 

0)ˆ( =+ ρ
∂
∂ρ v

t
div .   (7) 

As it has been mentioned above, I. Prigogine, G. Nicolis, P. Glansdorff studied 
the so-called conductive (diffusive and thermal conductive) flows [20, 21] 
satisfying equations analogous to Eqs.(4a), (7). In this connection, along with 
the velocity operator  let us introduce a conductive velocity for the 
antidiffusion mass flow density or, simply say, antidiffusion velocity: 

v̂

.lngrad)()( ρ
ρ
ρ ttu GG =

∇
=

r
   (8) 

Obviously, the antidiffusion velocity ur  of the antidiffusion mass flow density 
satisfies the well-known continuity equation of the kind: 

0)( =+ u
t

rρ
∂
∂ρ div .   (9) 

Using this continuity equation (9) we can calculate the partial derivative of the 
antidiffusion velocity (8) with respect to time: 

.}/)(ln{)grad()grad()(

}{)(}/)(ln{

))}((1{)(}
)(

1{)(

}1{grad)(lngrad})({

2 udttduut

uutudttd

utu
tdt

td
t

t
dt

td
t
u

rrr

rrr

rr

r

GdivG

GG

divG
G

G

GG

+−−=

=
∇

+∇∇−=

=−∇+=

=+=

ρ
ρ

ρ
ρ

∂
∂ρ

ρ
ρ

∂
∂

 (10) 

An advantage of the antidiffusion velocity notion (8) versus the velocity 
operator notion (5) to be introduced is contained in the fact that the antidiffusion 
velocity of particles inside a slow-flowing gravitational compressible spheroidal 
body can become observable one if the mass density of spheroidal body is very 
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small. Indeed, according to Eq. (8) if the mass density 0→ρ  then the 
antidiffusion velocity ∞→ur (under condition that ρgrad  be finitary). The 
condition of smallness for the mass density ρ  takes place in the molecular 
clouds of distributed gas-dust substance in space [27]. Thus, as a result of 
spheroidal body formation from an initial weakly condensed gas-dust cloud it 
might be a sharp increase of the antidiffusion velocity of particles into the 
forming spheroidal body under condition of finiteness of the mass density 
gradient. In this case it is reasonable to rewrite Eq. (10) based on the familiar 
formulas of vector analysis [23]: 

( ) [ ,rotgrad
2
1 2 uuuuu rrrrr

×+∇⋅= ]   (11a) 

).rot(rot)grad(2 uuu rrr
−=∇ div    (11b) 

Taking into account Eq. (8) we can see that ,0rot =ur  whence  

( ) ,2grad 2 uuu rrr
∇⋅=    (12a) 

).grad(2 uu rr div=∇    (12b) 

Substituting Eqs.(12a,b) in Eq. (10) we obtain: 

( ) .}/dt)(ln{2)( 2 utduuut
t
u rrrr
r

GG +∇⋅−∇−=
∂
∂

 (13) 

Taking into account Eq. (12a) again, the equation (13) can be written as follows: 

( ) .}/dt)(ln{)()2/grad( 22 utdutuuu
t
u rrrrr
r

GG +∇−−=∇⋅+
∂
∂

 (14) 

The obtained equation (14) is similar to the Navier-Stokes’ equation of motion 
of a viscous liquid [23] under conditions that a gas-dust substance of spheroidal 
body is isolated from influence of external fields and .)( constt == sGG  

Now let us estimate the antidiffusion velocity (8) of particles into a 
spherically symmetric slow-flowing gravitational compressible spheroidal body 
taking account of its mass density function (2): 

.)()(}2/)()(ln{grad)(),( 2
0 rttrttttru rrrr ααρ GG −=−=  (15) 

We can see that the antidiffusion velocity ur  is expressed by the very simple 
relation (15) in the case of a spherically symmetric spheroidal body. Apropos, 
using approach proposed by W. Ebeling for the first time [28] the equation for 
spherical autowaves of magnitude of gravitational field strength 
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( )uu
t
ua rr
r

r
∇+=

∂
∂

 of a slowly contracting spheroidal body has been derived in 

the work [29]. The obtained Eq. (15) reminds the formula the velocity of 
autowave front propagation [29] for gravitational strength magnitude in a 
remote zone of slowly compressible gravitating spheroidal body. 

Along with the antidiffusion velocity ur  there exists an ordinary 
hydrodynamic velocity v (or a convective velocity in the sense of Prigogine 
[20]). In principle, the hydrodynamic velocity 

r

vr of mass flow arises as a result 
of powerful gravitational contraction of a spheroidal body on the next stages of 
its evolution. The growing magnitude of gravitational field strength ar  induces 
the significant (i.e. observable) value of hydrodynamic velocity vr  of mass 
flows moving into spheroidal body. This means that the value of antidiffusion 
velocity (8) becomes much less than the value of hydrodynamic velocity, i.e. 

vu rr
<< .    (16) 

Under this condition (16), a common (hydrodynamic and antidiffusion) mass 
flow density inside a spheroidal body satisfies the hydrodynamic equation of 
continuity [23]: 

0)( =+ v
t

rρ
∂
∂ρ div .   (17) 

Taking into account Eq. (17) we can also calculate the partial derivative of the 
antidiffusion velocity (8) with respect to time in accord with the condition (16): 

.}/)(ln{)grad()grad()(

}{)(}/)(ln{

))}((1{)(}
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1{)(

}1{grad)(lngrad})({

udttduvvt

vvtudttd
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tdt
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t

t
dt
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t
u
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r

GdivG
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divG
G

G
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+−−=

=
∇

+∇∇−=

=−∇+⋅=

=+=

ρ
ρ

ρ
ρ

∂
∂ρ

ρ
ρ

∂
∂

(18) 

As known from a fluid-like description [23], the complete time-derivative of 
the common (hydrodynamic plus antidiffusion) velocity uv rr

+  inside a 
spheroidal body defines the common acceleration (or gravitational field strength 
of spheroidal body) including the partial time-derivatives and convective 
derivatives: 

( ) .)()( uu
t
uvv

t
v

dt
uvda rr

r
rr

rrr
r

∇⋅++∇⋅+
∂
∂

=
+

=
∂
∂

  (19a) 
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Taking into account Eq. (14) as well as Eq. (12a), the complete acceleration 
(19a) can be represented in the form: 

( ) .})(ln{)()()( 2 u/dttdutuuvv
t
v

dt
uvda rrrrrr

rrr
r GG +∇−∇⋅−∇⋅+

∂
∂

=
+

= (19b) 

Let us note since the mass density of spheroidal body is directly proportional 
to the probability volume density function according to the relation [1–6]: 

,Φρ M=      
where Φ  is a probability volume density function to locate a particle into 
spheroidal body, M  is a mass of spheroidal body, then antidiffusion velocity 
(8) (or (15)) can be defined by the probability volume density function: 

.lngrad)()( Φ
Φ
Φ ttu GG =

∇
=

r
   (20) 

Obviously, the antidiffusion velocity (20) of probability volume flow density 
also satisfies Eqs.(10), (14), (15), (18) and (19a,b). 
 
3    A nonlinear Schrödinger-like equation in the statistical theory of 
spheroidal bodies 

Considerations in the works [1–6] point to an initial quasi-equilibrium 
gravitational compression occurring in a forming spheroidal body. Within 
framework of the proposed “vibrating strainer” model [8–10], interactions of 
oscillating particles inside a spheroidal body lead to the coherent displacement 
of particles and, as a consequence, to a resonance increase of the parameter of 
gravitational compression )(tα . This means that nonlinear phenomena arise 
owing to self-organization processes [21] into a spheroidal body under its 
formation. These nonlinear phenomena induce nonlinear autowaves satisfying a 
nonlinear  Schrödinger-like equation. 

Now let us note besides the well-known linear undulatory Schrödinger 
equation there are its generalizations in the Nelson’s statistical mechanics and 
the Nottale’s scale relativity [11–14]. Moreover, it is not difficult to see [10] that 
both these equations of Schrödinger can be derived in the special case of a 
constant  in the antidiffusion equation (1) when )(tG 02/)( mt h−=G  and 

υγ 2/)( Mt −=G  respectively. Obviously, this paper considers the general 
case of  according to Eq. (2a), which is different from the Nelson’s and 
Nottale’s considerations. In this connection let us calculate the partial 
derivatives (relative to t ) of antidiffusion velocity and ordinary hydrodynamic 
velocity with the aim to obtain a nonlinear Schrödinger-like equation by 
analogy with the Nelson’s and Nottale’s theories. 

)(tG

So, now let us consider again Eqs.(18), (19b) derived within framework of 
the statistical theory of gravitating spheroidal bodies. Taking into account the 
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simple formulas (12a), (12b), (20), these Eqs. (18), (19b) can be rewritten in the 
form: 

;})(ln{)grad()grad()( u/dttduvvt
t
u rrrr
r

GdivG +−−=
∂
∂

 (21a) 

.})(ln{)grad()()2/grad()( 2 u/dttdutuvva
t
v rrrrrr GdivG −++∇⋅−=
∂
∂
r

 (21b) 

Let us investigate some special solution of Eqs. (21a, b) in the case that the 
acceleration (or gravitational field strength) comes from a gravitational field 
potential of spheroidal body, i.e.  

ga ϕgrad−=
r

,    (22a) 

under the assumption that the hydrodynamic velocity vr  is a gradient of a 
statistical action : ℑ

ℑ= grad)(2 tv Gr
.   (22b) 

Indeed, Eq. (18) points to a possible justification of Eq. (22b); in the special 
case of a constant  as  Eq. (22b) becomes the Nelson’s formula 

[13]:    

)(tG 02/ mh

ℑ= grad
0m

v hr
. 

In this connection, 0rot =vr , i.e. )2/grad()( 2vvv rrr
=∇⋅ . Since ur  is also 

a gradient due to Eq. (20) as well as ar  and vr  according to Eqs. (22a,b), so that 
Eqs. (21a, b) become the following: 

;lngrad)(}/)(ln{

)grad()grad()()ln)((grad

Φ+

+−−=
∂

Φ∂

tdttd

uvvt
t

t

GG

divGG rrr

 (23a) 

.lngrad)(}/)(ln{)grad()(

)2/grad()2/grad(grad
))(2(

grad 22

Φ−+

++−−=
∂

ℑ∂

tdttdut

uv
t
t

g

GGdivG

G

r

rrϕ
(23b) 

Integrating these Eqs.(23a,b) and taking into account a simplification 
, we can find that /dttdt/dttd )()(})(ln{ GG =⋅ G

;ln})({)()ln)(( ΦΦ
⋅+−−=

∂
∂ /dttduvvt

t
t GdivGG rrr

 (24a) 
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.ln})({)(2/2/))(2( 22 Φϕ ⋅−++−−=
∂

ℑ∂ /dttdutuv
t
t

g GdivGG rrr
 (24b) 

Let us carry out a change of dependent variable: 

;ln
2
1 Φ=ℜ    (25a) 

,= e ℑ+ℜ iΨ    (25b) 

where ℑ  is defined by Eq. (22b), 1−=i . Obviously, as it follows from Eqs. 
(25a,b) directly 

,ℑ⋅= ieΦΨ    (26) 

so that 2ΨΨΨΦ == ∗  as usually. According to the first change (25a) it is 
not difficult to see that 

;})({2)(4)(2))(2( 2 ℜ⋅+∇ℑ⋅∇ℜ−ℑ∇−=
∂

ℜ∂ /dttdtt
t
t GGGG 22  (27a) 

.}/)({2)(2

))((2))((2))(2(

2

22

ℜ⋅−ℜ∇+

+∇ℑ−∇ℜ+−=
∂

ℑ∂

dttdt

tt
t
t

g

GG

GGG

2

22ϕ
(27b) 

Let us rewrite these two Eqs. (27a, b) as one. To this end, after multiplication of 
the second Eq. (27b) on imaginary unit and then addition both of Eqs. (27a, b), 
we can obtain the following: 

[ ]

[ ] .}/)({1(2)()(2

))((2))((2

2

22

ℜ⋅−+ℑ+ℜ∇+

+ℑ∇+ℜ∇+−=ℑ+ℜ
∂
∂

dttdiiti

itiiit
t g

G)G

GG 2ϕ
 (28) 

Taking into account the second change (25b) we can see that 

;lnlnln2;ln 2ΨΨΨΨ =+=ℜ=ℑ+ℜ ∗i  

,/)(/)(;/ln)( 2222 ΨΨΨΨΨΨΨ ∇−∇=ℑ+ℜ∇∇=∇=ℑ+ℜ∇ ii  so that 
Eq. (28) takes the form: 

[ ] .ln})({1()(2ln)(2 22
Ψ

Ψ
ΨϕΨ ⋅−+

∇
⋅+−=

∂
∂ /dttditiit
t g G)GG 2 (29) 
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After some transformations and simplifications Eq. (29) can be represented as 
follows: 

,ln}/)({ln}/)({1(

)(2)(2 2

ΨΨ⋅−ΨΨ⋅−+

+Ψ∇⋅−Ψ=
∂
Ψ∂

dttdidttdii

t
t

ti g

G2G)2

GG 2ϕ
(30) 

whence we can obtain a nonlinear time-dependent Schrödinger-like equation of 
the kind: 

.]ln[ln)(])(2[)(2 2 Ψ
Ψ
ΨΨΨϕΨ i

dt
tdt

t
ti g −++∇⋅−=

∂
∂ G2GG 2 (31) 

Let us note that constt == sGG )(  in the virial (relative mechanical) 
equilibrium states of spheroidal body [3, 6], so the nonlinear time-dependent 
Schrödinger equation (31) becomes linear one in these special cases: for 
example, the time-dependent Schrödinger equation is a particular case of Eq. 
(31) if  satisfies the Nelson’s basic assumption [13] as well as the 
generalized time-dependent Schrödinger equation in the form of Nottale is a 
special case of Eq. (31). A specific particular case of Eq. (31) also corresponds 
to the Nottale’s generalized time-dependent Schrödinger equation with a slowly 
varying diffusion coefficient 

)(tG

Dδ  depending on time. So, the Nelson’s and 
Nottale’s considerations are appropriate mainly in the case of gravitational 
interaction of particles in a spheroidal body being in a virial equilibrium state. 

Thus, the derived nonlinear time-dependent Schrödinger equation (31) 
describes not only the mentioned states of virial mechanical equilibrium 

 or quasi-equilibrium gravitational compression state 
close to mechanical equilibrium with a slowly varying antidiffusion coefficient 

 but gravitational instability states with the considered 
resonance increase of gravitational compression of spheroidal body leading to 
formation of a cosmological body. 

))( constt == sG(G

)/)( 2tGt =(G

 
 
4    Conclusions 

 
The main contribution of this paper is to show that gravitational compression 

of a spheroidal body is described by nonlinear Schrödinger-like equation as well 
as to obtain this nonlinear Schrödinger-like equation. 

In Section 2, the equation (1) for the gravitational compression of a 
spheroidal body is considered initially. This Section investigates the density of 
antidiffusion mass flow into a slow-flowing gravitational compressible 
spheroidal body. Here the notion of antidiffusion velocity (8) inside a slowly 
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compressed spheroidal body is introduced. The equations (10), (18) for 
calculating the partial derivative of the antidiffusion velocity with respect to 
time (in the cases of absence or presence of the ordinary hydrodynamic 
velocity) are obtained. The equation (19b) relative to the complete time-
derivative of the common (hydrodynamic plus antidiffusion) velocity is also 
derived. 

In this paper, interconnections of the proposed statistical theory of 
spheroidal bodies with Nelson’s statistical mechanics and Nottale’s scale 
relativistic theory are investigated. Really, both Nelson’s statistical mechanics 
and Nottale’s scale relativistic theory introduce so-called mean forward and 
mean backward derivatives [11-14]. It is remarkable that, in the proposed 
statistical theory of spheroidal bodies, the main equations (relative to 
antidiffusion velocity) have been obtained without introducing any mean 
forward nor mean backward derivatives of stochastic processes. In this regard, 
the proposed statistical theory differs profoundly from Nelson’ stochastic 
mechanics [13, 14] as well as from Nottale’s scale relativistic theory [11, 12, 16, 
30, 31]. 

Moreover, the obtained main Eqs.(18), (19b) are more general than 
analogous equations in Nelson’ stochastic mechanics. Indeed, within framework 
of the proposed statistical theory of spheroidal bodies the generalized 
Schrödinger equations can also be derived as in Nottale’s scale relativistic 
theory (in the case of a constant  the derived nonlinear Schrödinger-like 
equation (31) becomes the generalized Schrödinger equation). So, the Nelson’s 
and Nottale’s considerations are appropriate mainly in the case of gravitational 
interaction of particles in a spheroidal body being in a virial equilibrium state. 

)(tG

As noted in Section 3, this paper investigates more general dynamical states 
of gravitating spheroidal body. Really, the derived nonlinear time-dependent 
Schrödinger-like equation (31) describes not only the mentioned states of virial 
mechanical equilibrium ))( constt == sG(G  or quasi-equilibrium 
gravitational compression state close to mechanical equilibrium with a slowly 
varying antidiffusion coefficient , but gravitational instability 
states with a resonance increase of gravitational compression of spheroidal body 
leading to formation of a cosmological body. 

)/)( 2tGt =(G

Thus, the linear Schrödinger equation as well as its generalizations are 
mentioned in this work in connection with the Nelson’s statistical mechanics 
and the Nottale’s scale relativity only. Moreover, both these equations of 
Schrödinger have been derived in the special case of a constant of gravitational 
compression function  in the proposed antidiffusion equation when 

 and 

)(tG

02/)( mt h−=G υγ 2/)( Mt −=G  respectively. In this connection the 
derived equations for calculating the partial derivatives (relative to ) of 
antidiffusion velocity and ordinary hydrodynamic velocity are used to obtain a 
nonlinear Schrödinger-like equation by analogy with Nelson’s and Nottale’s 
theories. Indeed, nonlinear phenomena arise owing to self-organization 
processes into a spheroidal body under its formation. These nonlinear 

t
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phenomena lead to nonlinear autowaves satisfying a nonlinear Schrödinger-like 
equation. 

As mentioned above, the obtained result (relative to the nonlinear time-
dependent Schrödinger-like equation (31)) has been suggested in accordance 
with similar conclusions of El Naschie [15] and Ord [32] that the Schrödinger 
equation could be universal, i.e. that it may have a large domain of applications, 
but with interpretations different from that of standard quantum mechanics. This 
main conclusion formulated with point of view of these modern quantum 
gravity theories confirms entirely correctness of the considered approach based 
on the statistical theory of spheroidal bodies. 
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