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Abstract: This work investigates the different dynamical states of cosmogonical body 

formation using the generalized nonlinear Schrödinger-like equation. In particular, the 

cubic time-dependent Schrödinger-like equation describing of cosmogonical body 

forming in the state of soliton disturbances is derived. The soliton solution of the cubic 
generalized Schrödinger-like equation of a forming spheroidal body is considered. The 

reduced model of dynamical system into state-space of the cubic nonlinear Schrödinger 

equation is obtained. 
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1    Introduction 

This work investigates different dynamical states of cosmogonical body 

formation using the generalized nonlinear Schrödinger-like equation obtained 

within the framework of statistical theory of gravitating spheroidal bodies. The 

statistical theory for a forming cosmogonical body (based on the model of so-

called spheroidal body) has been proposed in our previous works [1-7]. As 

shown within the framework of this theory, interactions of oscillating particles 

inside a spheroidal cloud lead to a gravitational condensation increasing with the 

time. As a result, the generalized nonlinear time-dependent Schrödinger-like 

equation describing a gravitational formation of a spheroidal body has been 

derived [3, 4, 7]. As shown, this equation is found more general than analogous 

equations obtained in Nelson’ stochastic mechanics [8] and Nottale’s scale 

relativistic theory [9-11].  

This work considers different dynamical states of a gravitating spheroidal body 

and respective forms of the generalized nonlinear time-dependent Schrödinger-

like equation. In particular, the derived time-dependent generalized nonlinear 

Schrödinger-like equation describes not only the state of virial mechanical 

equilibrium and the quasi-equilibrium gravitational condensation state, but the 
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initial equilibrium gravitational condensation state taking place in a forming 

gas-dust protoplanetary cloud as well as the soliton disturbance state and other 

gravitational instability states including the formation of the core of a 

cosmogonical body. Besides, the last case involves the avalanche gravitational 

compression increasing (when the parameter of gravitational condensation 

grows exponentially with the time), i.e. the case of unlimited gravitational 

compression leading to the collapse of a cosmogonical body. 

In this paper, the cubic time-dependent Schrödinger-like equation describing 

formation of a cosmogonical body in the state of soliton disturbances has been 

derived. Then a reduced model into the state-space for the cubic Schrödinger-

like equation is obtained. We show that the proposed model is represented by 

the system of four ordinary nonlinear differential equations with quadratic 

nonlinearity. We also note that the obtained attractor can demonstrate the 

complex dynamics into the state-space like the Lorenz one [12] or the similar 

attractor describing flows with the curvature of streamlines [13]. 

 

2    Some particular cases of the generalized nonlinear Schrödinger-

like equation describing different dynamical states of a gravitating 

spheroidal body and the characterizing number K  as a control 

parameter of these states 
 

In the works [3, 4], the generalized nonlinear time-dependent Schrödinger-like 

equation describing a gravitational formation of a cosmogonical body has been 

derived: 

   ΨargΨΨln
)(
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where   is a wave function, 
g  is a gravitational field potential, )G(t

 
is an 

antidiffusion function, i.e. the generalized gravitational compression function 

(GCF)  

dt

d
t






22

1
)(G     (2) 

and )(t   is a parameter of gravitational condensation of a spheroid-like 

gaseous cloud or, simply say, spheroidal body [1-6], 1i  . 

Let us consider different dynamical states of a gravitating spheroidal body as 

well as the respective forms of the generalized nonlinear time-dependent 

Schrödinger-like equation (1). Indeed, this equation describes not only the state 

of virial mechanical equilibrium [1-4] when GCF R constG)G( st  (or 

CsG ) and RΨ  (or C ): 
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and the quasi-equilibrium gravitational condensation state [3, 4] with a slowly 

(periodically) varying GCF increment when R ]cos1[G)G( tt s   (or 
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but also the initial equilibrium gravitational condensation state [1-4] occurring 

in a forming gas-dust protoplanetary cloud: 

Ψ
Ψ
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as well as the soliton disturbances state arising in a spheroidal body under 

formation [7]: 
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and the gravitational instability states [4,7] when GCF C)G(t  and 

C argie : 
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including the increase of gravitational compression of spheroidal body 

providing the formation of a core of a cosmogonical body if 2Ψarg0   

(the case of unlimited gravitational compression leading to a collapse occurs 

when Z nn,2ΨargΨarg  ). 

Let us note that the generalized nonlinear time-dependent Schrödinger-like 

equation (1) has been derived in [3, 4, 7] from the following equations: 

u
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where u


 is a the antidiffusion velocity (unlike of the ordinary hydrodynamic 

velocity v


) for a rotating spheroidal body [2, 4]: 




 )(u tG


,     (9) 

where 2/

0

2

)( rer    is a mass density, 
2/3

0 )2/(  M , M  is a mass of 

spheroidal body [1-5]. 

Since the generalized nonlinear Schrödinger-like equation (1) describes 

different dynamical states of a gravitating spheroidal body then we can carry out 

an analysis of dynamical states of a spheroidal body based on initial Eqs. (8a), 

(8b) introducing the scales of physical values sFUVLT G,,,,, and the 

respective dimensionless variables gfuv ,,,,,


  as follows: 
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By substituting Eqs. (10) in Eqs. (8a, b) we obtain: 
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Similarly to [14], dividing Eq. (11a) by LVU /  and Eq. (11b) by LV /2
we 

derive the following dimensionless equations [7]: 
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where VTL /Sh  is the Strouhal number, FLV /Fr 2  is the Froude 

number, /Re VL is the Reynolds number (  is a kinematic coefficient of 

viscosity of flow of particles [14]), VU /K   is a new number of similarity. 

The new number of similarity is a measure of the values u


versus v


prevailing 

[7]: 

v

u
K 



 .               (13) 

When this similarity number exceeds unity ( 1K  ) then the antidiffusion 

condensation of a spheroidal body occurs exclusively, so that the value of 

hydrodynamic velocity is negligible )0v( 


because a gravitational field is 
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absent practically. If the similarity number becomes close to unity ( 1K  ) then 

the hydrodynamic velocity v


of mass flow arises as a result of a gravitational 

contraction of a spheroidal body on the field stage of its evolution. As noted in 
[7], the value of antidiffusion velocity (9) becomes much less than the value of 

hydrodynamic velocity vu


 when 1K  . This means that the growing 

magnitude of powerful gravitational field strength a


 induces the significant 

value of hydrodynamic velocity v


 of mass flows moving into a spheroidal 

body. Thus, like the Mach number M  [14] the new number of similarity K  is a 

control parameter of dynamical states of a forming spheroidal body. 

In particular, in the special case 1K  corresponding to the generalized 

nonlinear Schrödinger-like equation for the initial equilibrium gravitational 

condensation state (5) two dimensionless Eqs. (12a, b) are reduced to one 

dimensionless equation of the kind: 

 




u
utgu s




Sh)grad()(
Re

1
)2/Kgrad( 2 div
G ,    (14) 

which corresponds the following equation [7]: 
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Except the antidiffusion solution, the equation (15) has a wave solution in the 

vicinity of equilibrium state when constsG  
and 1u 


: 
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Moreover, if we determine 
st GG i)(  , solution (16a) becomes a wave solution 

of the kind : 

 )i(

0
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 .                                             (16b) 

In the initial equilibrium gravitational condensation state, the wave solutions 

(16a) and (16b) are generated respectively, moreover, they induce specific 

additional periodic forces and spatial oscillations (like the radial and the axial 

oscillations of Alfvén–Arrhenius [15, 16]) in the different domains of a forming 

spheroidal body. 

 

3    The investigation of wave solutions of the generalized nonlinear 

Schrödinger-like equations of a forming cosmogonical body  

Now let us consider some wave solutions of the generalized nonlinear 

Schrödinger-like equation taking into account its important particular cases (5) 

and (6).  

The initial equilibrium gravitational condensation state is realized in a forming 

gas-dust protoplanetary cloud when the initial gravitational field 
g  

is absent 
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( 0g  ) and G( ) G constst   ,
 
so that the generalized nonlinear Schrödinger-

like equation (1) becomes the linearized Schrödinger equation (5). Like (16b) 

we are seeking a wave solution in the vicinity of the equilibrium state when 

constsG : 
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The obtained equation coincides with Eq. (5), therefore 2G kss  . So, the 

wave solution of Eq. (5) can be rewritten in the following form: 
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As mentioned relative to (16b), the analogous wave solution occurs for the 

antidiffusion velocity )i(
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Now we are going to investigate nonlinear wave solutions of the generalized 

nonlinear Schrödinger-like equation of a cosmogonical body formation. As 

noted in [4], as a result of the formation of a core of cosmogonical body (based 

on a model of a spheroidal body) from an initial weakly condensed molecular 

cloud, a sharp increase in the antidiffusion velocity of particles inside the cloud 

is highly likely leading to the gravitational field origin, subsequently. In this 

connection, we consider a possible scenario of transition from solutions in the 

form of plane waves (17) to nonlinear wave solutions of the generalized 

nonlinear Schrödinger-like equation (1) in the case 1K  .  

In other words, let us pass from equation (5) to a more general equation with a 

time-varying function of gravitational compression )G(t  under condition that the 

absolute value of the wave function is small, in other words, 1)Ψ( t . To this 

end, we use the generalized nonlinear Schrödinger-like equation (1) of a 

spheroidal body formation from a molecular cloud in a state of gravitational 

instability but under the condition of smallness of the initial gravitational field 

g  
and the absolute value )Ψ(t

 
respectively: 
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In this case, the logarithmic function in the right-hand side of Eq. (18a) can be 

decomposed into a Taylor series and restricted to the first term of smallness: 

1Ψ...2/]1Ψ[]1Ψ[])1Ψ[1ln(Ψln
222222
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With regard to (18b), the equation (18a) takes the form: 

        Ψ)1argΨ2(
)(

ΨΨ
)(

Ψ)(2
Ψ

)(2i
22















dt

td

dt

td
t

t
t g

GG
GG 2  .(19) 

Dividing both sides of Eq.(19) by )(2 tG  we obtain: 
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According to Eq. (26) from [3]:  ie , the argument of the wave 

function is the statistical action  , so that the hydrodynamic velocity is to be its 

gradient: 

 grad)(
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Since there is no practically hydrodynamic velocity for a motionless molecular 

cloud )0v( 
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then the value of statistical action is also negligible: 
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Taking into account the condition (22), Eq. (20) goes to the following: 
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When a spheroidal body is forming from an initial weakly condensed molecular 

cloud, its initial gravitational potential 
g  

is proportional to )(tG , as noted in 

[7]. So, taking this circumstance into account, Eq. (23) is noticeably simplified: 
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We can note that the obtained equation (24) fully corresponds to the announced 

nonlinear Schrödinger-like equation (6) of a spheroidal body forming in the 

state of soliton disturbances. Indeed, denoting in Eq. (24) by )(tG , 

dt

td )(ln

2

1 G
 , A  we obtain the well-known nonlinear (cubic) 

Schrödinger equation (NSE) [17]: 

AAA
t

A 22i  



,                     (25) 

where  trAA ,


  is an amplitude of the envelope of wave packet and  , are 

some values. 
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NSE, a nonlinear second-order partial differential equation describing the wave 

packet envelope in a medium with dispersion and cubic nonlinearity, is one of 

the key equations playing an important role in the theory of nonlinear waves, in 

particular, in nonlinear optics and plasma physics [17, 18]. Using the Maxwell 

equations, as well as the equations of medium, in the case of a slowly varying 

amplitude E


A  
of a linearly polarized wave 

xtkxtzyxAtzyx e)](iexp[),,,(
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in the reference system of a moving electromagnetic pulse 

( )(/, 0glab zttz   where  
0

/)( 0 ωg kωωυ   is the group velocity), 

a scalar equation of the NSE-type (25) can be obtained within the framework of 

the paraxial approximation [18]. In this case, the cubic term in the right-hand 

side of Eq.(25) describes the optical effect of Kerr, i.e. a change of the refractive 

index of optical material is proportional to the second power of strength of the 

acting electric field. 

Since the NSE (25) completely corresponds to the cubic generalized 

Schrödinger-like equation (24) for the state of soliton perturbations, this means 

that, just as NSE (25) describes an evolution of the envelope of a wave packet of 

electromagnetic waves propagating in nonlinear dispersible media, the cubic 

nonlinear Schrödinger-like equation (24) describes an evolution of the envelope 

of a wave packet of Jeans’ substantial waves that propagate in a nonlinear and 

dispersive medium of a forming cosmogonical body (in accordance with the 

theory of gravitational instability of Jeans [19]). 

Under a suitable choice of parameters in Eq. (24) (or NSE (25)), we can write a 

one-dimensional version of the cubic generalized Schrödinger-like equation: 
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where, in the general case ),( tx  is a complex-valued function. Solution of 

Eq.(27) in the form of a traveling nonlinear wave satisfying the condition 0  

at x  is the following [17]: 
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where a ,  and 0 , 0x  are arbitrary constants. It is known [17, 18] that the 

envelopes of the NSE solution in the form of a traveling nonlinear wave (28) are 

also called solitons (see Fig. 1). 
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Figure 1. Soliton solution of a one-dimensional cubic generalized 

Schrödinger-like equation of a forming spheroidal body 

 

Thus, this feature of the solution behaviour in Fig.1 has predetermined the title 

of equation (6). 

 

4 Derivation of reduced model in the state-space of a nonlinear 

dynamical system describing behaviour of the cubic generalized 

Schrödinger-like equation 
 

Considering the one-dimensional partial differential equation (27) we would like 

to obtain a system of ordinary differential equations (ODEs) in state-space like 

the well-known Lorenz system [12].  

To this end, we intend to seek a solution (27) in the form: 
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where, according to the mentioned formula (26) in the paper [3], 

),(),(0 txtx   and ),( tx  is an one-dimensional probability density 

function to locate a particle into a spheroidal body. 

In this case, for the derivatives in Eq. (27), the following expressions are valid: 
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where the dot means differentiation with respect to the time while the dash is 

differentiation with respect to the coordinate in (30a,b) (the arguments of 

functions have been omitted for brevity). 

Substitution of (30a) and (30b) into Eq. (27) leads to the following equation: 
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so that after separation of the real and imaginary parts we obtain: 
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Let us represent the system of two equations (32) in the form: 
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















.2

;

''

0

''

00

2

0

2'

0

''

0



 
                                (33) 

Relations (33) are a system of nonlinear equations leading to the reduced model 

like the Lorenz model allowing chaotic dynamics in state-space [12]. With a 

view to further transformation of the system (33) we assume that the amplitude 

),(0 tx depends on the coordinate rather weakly that initially takes place in the 

molecular cloud (when 0 ). This assumption permits us to neglect the term 

0

''

0 / in the first equation of system (33). As a result, we obtain the following 

system of equations: 











.2

;
''

0

''

00

2

0

2'



                              (34) 

In (34), two variables x  and t  still appear in explicit form. To use only one 

variable (temporal) t  we can apply the Galerkin’s method known in 

aerohydrodynamics for flow stability problem solving [20]. According to this 

method we are going to look for the functions 
0  and   in the form of 

expansions in a set of orthogonal basic functions: 

).cos)(sin)((),(

);cos)(sin)((),(0

nkxtHnkxtGtx

nkxtBnkxtAtx

n

n

n

n

n

n








                   (35) 

Choosing the concrete expansions (35), then substituting them into (34) and 

grouping the terms associated with the different components of these expansions 

we obtain various ODE systems of the kind: 

),...,( 21 ni qqqfq  ,                                    (36) 

where iq  are the amplitudes in the expansions (35), i.e. nn BA , etc., and the 

function ),...,( 21 nqqqf  is a polynomial one in the case under consideration. 

So, the nonlinearity in this reduced mathematical model is associated 

respectively with the nonlinear terms in equations of system (34), and it is 

clearly manifested when the multiplication of 2 trigonometric functions of the 

series (35) gives the 3rd one also presenting in the given decomposition. Later on 

we consider expansions involving second order harmonics only. 
 

With a view to simplification, we can additionally assume a weak 

dependence of phase   on the time leading to the condition 0 , that is 

consonant with the above mentioned condition (22). This means that we can 

pass from the system (34) to a single nonlinear equation relative to the function 

),(0 tx . In this case, we obtain the expression for the coordinate derivative of 

0  from the first equation of system (34): 
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0

'   ,                                                  (37) 

which after substitution into the second equation of this system (34) leads to a 

simple nonlinear differential equation with respect to 
0 : 

'

00

'

000

'

00 32   .              (38) 

In order to eliminate the coordinate derivative from Eq. (38) and obtain the 

model in a reduced form (just as it was done in the works [12], [13], [21] 

concerning problems of Rayleigh–Benard (convection in the heated layer [20]), 

Couette–Taylor (flows between coaxial rotating cylinders [22], [23]), Görtler 

(flows past a concave wall [24])) we suppose that the function ),(0 tx
 

is 

periodic with respect to x , so that we can represent it in the form of a 

decomposition in a trigonometric series leaving the first and second harmonics: 

kxtDkxtCkxtBkxtAtx 2cos)(2sin)(cos)(sin)(),(0  .      (39) 

Then for the derivative with respect to the coordinate we get the expression: 

 
kxktDkxktCkxktBkxktAtx 2sin2)(2cos2)(sin)(cos)(),('

0  .   (40) 

After substituting (39) and (40) into Eq. (38) we have: 

),2sin2cos22cos2cos2sin2coscos2cos

2sin2sin22cos2sin2sin2sincos2sin

2sincos22coscos2sincoscoscos

2sinsin22cossin2sinsincossin(3

2cos)(2sin)(cos)(sin)(

2

2

2

2

kxkxkDkxkxkCDkxkxDBkkxkxDAk

kxkxkDCkxkxkCkxkxCBkkxkxCAk

kxkxkDBkxkxkCBkxkxkBkxkxBAk

kxkxkDAkxkxkCAkxkxABkkxkxkA

kxtDkxtCkxtBkxtA















 

whence after separation of the terms associated with the various components of 

the decomposition (39) we obtain the following system of ODEs: 

 

 

 

.3

;
2

3

;
2

3

;
2

3

22

ABkD

AB
k

C

BCAD
k

B

BDAC
k

A

























                               (41) 

Renaming the coefficients DCBA ,,,
 

with the preceding notation 

4321 ,,, qqqq  in Eq. (36) and introducing the control parameter 2/3 ka   we 

obtain the following reduced model: 

                                           

.2

;)(

;)(

;)(

214

2

1

2

23

32412

42311

qaqq

qqaq

qqqqaq

qqqqaq

















                              (42) 
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The obtained system (42) is an ODE system with quadratic nonlinearity, so in 

this sense it is similar to the logistic parabola model [20] as well as the Lorenz 

model [12] and the model describing dynamical behaviour of flow with 

curvature of streamlines [13]: 

,

;

;

3213

21312

32121

dqqqq

cqbqqqq

qqqaqq













                             (43) 

however, unlike the last it contains 4 instead of 3 equations.  

As seen from a comparison of Eq. (24) with Eq. (27), the value   in Eq.(27) is 

proportional to )(tG  
under consideration of one-dimensional version of the 

cubic generalized Schrödinger-like equation (24) of a spheroidal body forming 

in the state of soliton perturbations. This means that the control parameter of the 

reduced model (42) in the state-space of the nonlinear dynamical system 

(describing behaviour of the cubic generalized Schrödinger-like equation (24)) 

is determined by the value of )(tG .  

 

5    Conclusion 

 
When a cosmogonical body (being in the perturbation state) is formed, linear 

and nonlinear waves of various types arise there including soliton-like waves. In 

the section 3, the soliton solution of the cubic generalized Schrödinger-like 

equation (24) of a forming spheroidal body is considered, i.e. the propagation of 

soliton waves of Schrödinger type during the formation of the core of a 

cosmogonical body is justified. In the section 4, the reduced model representing 

the system (42) of four ordinary nonlinear differential equations with quadratic 

nonlinearity for the cubic nonlinear Schrödinger-like equation is obtained. 
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