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Abstract. In this paper, authors study the synchronization of a small-world network.
We consider chaotic generators of multi-scroll attractor to compose the complex net-
work. By applying Newman-Watts algorithm, we introduce long-range connections in
an arrangement of N -coupled chaotic oscillators, attempting to improve communica-
tion between the oscillators. Authors will show that the small-world property allows
us to synchronize a complex network by using a small coupling strength. Chaotic
synchronization is achieved by using the complex systems theory. Numerical simula-
tions are provided to show the effectiveness of the method.
Keywords: Chaos synchronization, small-world networks, multi-scroll chaotic at-
tractors.

1 Introduction

The decade of the 1960’s witnessed two of the most important findings on non-
linear and complex systems: we can firstly mention the emergence of chaotic
behavior, being Edward N. Lorenz who presented the first evidence of chaos.
Helped by the emerging computers, that made possible to visualize the behav-
ior of some systems from the solution of their differential equations, Lorenz
published his historical article on deterministic nonperiodic flow [1]. By using
numerical methods, the trajectories of some equations, which described the
forced dissipative hydrodynamic flow, were obtained to be identified in phase
space. This resulted in the generation of a significant amount of knowledge,
which led to a deep study of the field and the emergence of numerous sys-
tems exhibiting this phenomenon, from which can be highlighted conventional
chaotic oscillators like Chua, Lorenz and Rössler [1–4], multi-scroll chaotic os-
cillators [5–8], fractional-order chaotic oscillators [9–11], for instance.
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Thirty years later, chaos was again the center of attention after L.M. Pec-
ora and T.L. Carroll synchronized, for the first time, two identical chaotic
oscillators with different initial conditions [12]. In the years following this
achievement, the basic concepts and applications of chaos synchronization were
established. The most remarkable works on this field are the following:

C.W. Wu and L.O. Chua defined the concepts of asymptotic and partial
synchronization in 1994, establishing the relation between asymptotic synchro-
nization and asymptotic stability [13]. J.F. Heagy et al. investigated the role of
unstable periodic orbits in synchronous chaotic behavior in 1995 [14], proving
how desynchronized bursting behavior is initiated, and suggesting taking this
phenomenon into account to yield high quality chaotic synchronization.

In 1996, N.F. Rulkov discussed the cooperative behavior related to the
regimes of synchronized chaos and outlined some examples that illustrate dif-
ferent types of identical chaotic oscillations [15]. L.M. Pecora et al. reviewed
the basics of chaotic synchronization and examined coupling configurations as
well as secure communication schemes one year later [16]. A unified approach
for the analysis and comparison of conventional and chaotic communications
systems was provided by G. Kulumbán et al., who clarified the role of syn-
chronization for chaotic communications and described chaotic synchronization
schemes [17].

The second remarkable event of the 1960’s, was the definition of the concept
of six degrees of separation, derived from an experiment performed by Stanley
Milgram [18,20]. According to [19,20], Milgram’s experiment consisted of ran-
domly distributed letters to people in Nebraska to be sent to Boston by people
who might know the consignee. Milgram found that it had only taken an aver-
age of six steps for a letter to get from Nebraska to Boston. He concluded that
six was the average number of acquaintances separating people in the entire
world. This famous concept later evolved into the small-world property.

The small-world networks became popular after D.J. Watts and S.H. Stro-
gatz published the algorithm to introduce the small-world property into a reg-
ular network. They showed the resulting network fulfilled high clustering coef-
ficient and short average path length [19].

In this paper, we combine the complexity generated by nonlinear systems,
which generate multi-scroll chaotic attractors for our case, and the properties
of complex systems, whose topology is of great interest, which has been proved
to have influence in two major results: firstly, the discovery that the behavior
of biological and non-biological systems can be modeled by the dynamics of
complex networks [21–27]. Secondly, the influence or effect of topology on the
realization of system processes [28–30].

This work addresses the chaotic synchronization of a complex network
that displays the small-world property, which will be introduced by using the
Newman-Watts algorithm. Every element of the network will be a nonlinear
dynamical system, which has the ability to generate multi-scroll chaotic attrac-
tors. Authors will show it is possible to carry the complex network to behave
in a synchronous way by applying a control law only in one state and by using
a relative small coupling strength.



Chaotic Modeling and Simulation (CMSIM) 2: 223–234, 2017 225

The remainder of the paper is organized as follows: a brief review on com-
plex dynamical networks and their synchronization is given in Sect. 2. Section
3 provides the explanation of the Newman-Watts small-world algorithm and
the description of its basic characteristics. Section 4 provides the model de-
scription of the multi-scroll chaotic oscillator, which will be used to compose
the complex network, and its corresponding chaotic attractor. Numerical sim-
ulations of an example of chaotic synchronization of a small-world network are
provided in Sect. 5. The computation of the coupling strength is also provided
here. Some conclusions are given in Sect. 6.

2 Complex Networks

In the present Sect. we will address the topic of complex networks and their
synchronization. We will provide the definition of a complex network and the
coupling matrix technique, which is used to achieve synchronization.

Among the possible definitions of a complex network, we will use the one
suggested by Wang [31].

Definition 1. A complex network is defined as an interconnected set of os-
cillators (two or more), where each oscillator is a fundamental unit, with its
dynamic depending of the nature of the network.

Each oscillator is defined as follows

ẋi = f(xi) + ui , xi(0), i = 1, 2, . . . , N, (1)

where N is the network’s size, xi = [xi1, xi2, . . . , xin] ∈ IRn represents the
state variables of the oscillator i. xi(0) ∈ IRn are the initial conditions for
oscillator i. ui ∈ IRn establishes the synchronization between two or more
oscillators and it is defined as follows [32]

ui = c

N∑
j=1

aijΓxj , i = 1, 2, . . . , N. (2)

The constant c > 0 represents the coupling strength. Γ ∈ IRn×n is a con-
stant matrix to determine the coupled state variable of each oscillator. Assume
that Γ = diag(r1, r2, . . . , rn) is a diagonal matrix. If two oscillators are linked
through their k-th state variables, then, the diagonal element rk = 1 for a
particular k and rj = 0 for j 6= k.

Synchronization is achieve through (2), where aij are the elements of A ∈
IRN×N which is the coupling matrix. The matrix A shows the connections
between oscillators; if the oscillator i-th is connected to the oscillator j-th,
then aij = 1, otherwise aij = 0 for i 6= j. The diagonal elements of A matrix
are defined as

aii = −
N∑

j=1,j 6=i

aij = −
N∑

j=1,j 6=i

aji, i = 1, 2, ..., N. (3)
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The dynamical complex network (1)–(2) is said to achieve synchronization
if

x1(t) = x2(t) = . . . = xN(t) as t→∞. (4)

In this work we will synchronize N -coupled multi-scroll chaotic oscillators
arranged in small-world topology.

3 Small–World Networks

The small-world property consists in the existence of long-range links connect-
ing pairs of nodes distant from each other. The concept of the six degrees of
separation is implied due to it is needed a small number of steps (acquaintances)
to reach any node in this type of networks.

The complex network features that will be affected by the small-world prop-
erty are: on one hand the clustering coefficient C, which is defined as the av-
erage fraction of pairs of neighbors of an oscillator that are also neighbors of
each other, the clustering coefficient ci of the oscillator i is defined as the ratio
between the actual number Ei of edges that exist between ki oscillators and
the total number ki(ki − 1)/2 [31,33], so ci = 2Ei/ki(ki − 1). The clustering
coefficient C of the whole network is the averaged of ci over all i

C =
1

N

N∑
i=1

2Ei
ki(ki − 1)

. (5)

On the other hand the average shortest path length L, which is defined as the
shortest distance between two oscillators averaged over all pairs of oscillators
[31,33]

L =
1

N(N − 1)

∑
i6=j

dij , 1 ≤ i, j ≤ N, (6)

where dij is the distance between node i and node j. Due to the existence of
long-range links, the small-world network has high clustering coefficient C(N, p)
and short average path length L(N, p).

In the following, the Newman-Watts algorithm, which is used to introduce
the small-world property into a regular network, will be described.

3.1 Newman-Watts Small-World Algorithm

In 1998 D.J. Watts and S.H. Strogatz proposed the first algorithm to intro-
duce the small-world property into a regular network. One year later M.E.J.
Newman and D.J. Watts proposed a revised version of the original small-world
algorithm [34,35]. The Newman-Watts procedure starts from the nearest neigh-
bor topology, which is a ring lattice with periodic boundary conditions [35], but
unlike the previous case, this algorithm introduces the small-world property by
adding links to pairs of nodes, in this case chaotic oscillators, randomly chosen.
Restrictions are:

1. The size of the networks remains unchanged.
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2. No oscillator is allowed to have multiple links with other oscillator.

3. No oscillator is allowed to have links with itself.

4. It is strongly recommended to hold the relation N � k,

whereN is the size of the network, k is the periodic boundary condition, i.e., the
oscillator i is connected with its i ± 1, i ± 2, . . . , i ± k neighboring oscillators;
p is the probability to add a link. To determine the amount of links to be
added we consider the following: the oscillator i is already connected with its
2k neighboring oscillators. The third restriction does not allow the oscillator
i to have links with itself, thus, it can connect N − (2k + 1) oscillators more;
therefore, for the whole network we have N(N − (2k + 1)) links. However,
since the considered network is undirected and the second restriction does not
allow multiple links between pairs of oscillators, the connection from oscillator
i to oscillator j is the same as the connection from oscillator j to oscillator i;
therefore we have N(N − (2k + 1))/2 possible links. As the Newman-Watts
algorithm is applied, N(N − (2k + 1))p/2 links are introduced.

Figure 1 shows the evolution of the Newman-Watts small-world algorithm.
We conclude the following: when p = 0 the topology remains unchanged and
the network is considered regular. As the probability increases 0 < p < 1 one
obtains a small-world network by adding links to randomly pairs of oscillators.
At the point where p = 1 all the possible links have been added and the network
has become globally coupled.

Fig. 1. Evolution of the Newman-Watts small-world algorithm. For p = 0 and p = 1
we obtain regular topologies; when 0 < p < 1 one obtains small-world topology. The
solid lines are the original links. The dashed lines are the links randomly added as p
increases

Figure 2 depicts the evolution of the clustering coefficient C and the average
shortest path length L, as the Newman-Watts small-world algorithm is applied
in a network with N = 200 and k = 20. We want the reader to notice two
things: on one hand, how the average shortest path length decreases signifi-
cantly for a small change in the probability, reaching its lowest value for p ≈ 0.
On the other hand, the fact that the clustering coefficient, whose highest value
for a network is C = 1, increases significantly for p ≈ 1.
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Fig. 2. Evolution of the clustering coefficient C and the average shortest path length
L of a network with N = 200 and k = 2

In the following, we will present the model that describes the multi-scroll
chaotic oscillator, which will be used to compose the small-world network to
be synchronized.

4 Multi-Scroll Chaotic Oscillator Genesio-Tesi 3D

In this Sect., authors provide the mathematical model of the multi-scroll at-
tractor generator, which is a generalization of the original Genesio-Tesi chaotic
oscillator, that generates different amount of scrolls along any of its state vari-
ables. For simplicity, we will call it Genesio-Tesio 3D, which is described as
follows [36]:

ẋ = y − f1(y), f1(y) =
My∑
i=1

g (−2i+1)
2

(y) +
Ny∑
i=1

g (2i−1)
2

(y),

ẏ = z − f1(z), f1(z) =
Mz∑
i=1

g (−2i+1)
2

(z) +
Nz∑
i=1

g (2i−1)
2

(z),

ż = −ax− ay − az + af3(x), f3(x) =
m−1∑
l=1

γgnl
(x),

(7)

where nl = ρ+ 0.5 + (l−1)(ρ+ ς+ 1), γ = ρ+ ς+ 1, ρ = |mini,j{ueq,yi +ueq,zj }|,
ς = |maxi,j{ueq,yi + ueq,zj }| and

gθ(•) =


1, • ≥ θ, θ > 0,
0, • < θ, θ > 0,
0, • ≥ θ, θ < 0,
−1, • < θ, θ < 0.

(8)

Here, x, y, z ∈ IR; a = 0.8 makes (7) to exhibit chaotic behavior. ueq,y =
−My, . . . , −1, 0, 1, . . . , Ny and ueq,z = −Mz, . . . , −1, 0, 1, . . . , Nz, are the
vectors for the y and z variables related to the equilibrium points and (8) is
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the core function [36]. In Fig. 3a it is shown an example of the time evolution
of the y(t) state variable. Figure 3b depicts a modality of Genesio-Tesi 3D
chaotic attractor with 4× 2× 2 scrolls.
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Fig. 3. (a) Time evolution of y(t) state variable obtained with (7). (b) View x −
y − z of a 4 × 2 × 2 multi-scroll chaotic attractor obtained with [x(0), y(0), z(0)] =
[−0.3, 0.5, −0.1], My = 0, Ny = 1, Mz = 0, Nz = 1 and m = 4 for ueq,y = [0 1] and
ueq,z = [0 1]

5 Synchronization results

In the following, complex networks of identical multi-scroll chaotic oscillators
Genesio-Tesi 3D will be synchronized.

Considering a synchronization scheme of N = 300 chaotic oscillators, with
periodic boundary condition k = 10, we obtain the coupling matrix of the
nearest neighbor topology. Then, we apply the Newman-Watts algorithm to
introduce the long-range connections to generate a small-world network, whose
elements will be the multi-scroll chaotic generator Genesio-Tesi 3D. According
to (1), the small-world network is described as follows

ẋi = yi − f1(yi) + c
N∑
j=1

aijxi,

ẏi = zi − f1(zi), for i = 1, . . . , N,
żi = −axi − ayi − azi + af3(xi),

(9)

where

f1(yi) =

My∑
n=1

g (−2n+1)
2

(yi) +

Ny∑
n=1

g (2n−1)
2

(yi), (10)

f1(zi) =

Mz∑
n=1

g (−2n+1)
2

(zi) +

Nz∑
n=1

g (2n−1)
2

(zi), (11)
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f3(xi) =

m−1∑
l=1

γgnl
(xi), (12)

using the core function (8) for each nonlinearity f1(•) and nl, γ, ρ, ς as previ-
ously described.

As we can remember from Sect. 2, the control law, given by (2), depends
on Γ matrix, set as Γ = diag(1, 0, 0), that means we couple through the first
state; the coupling matrix elements aij and the coupling strength c. The latter
will be obtained by using a methodology, originally designed for other types of
networks [23], to investigate its effectiveness in achieving synchronization on
small-world networks.

Consider the small-world network described by (9). The synchronization
error between any pair of chaotic oscillators will be defined as e1 = x1 − x2,
e2 = y1 − y2 and e3 = z1 − z2, that yields the following synchronization error
system  ė1 = −2ce1 + e2 − [f1(y1)− f1(y2)],

ė2 = e3 − [f1(z1)− f1(z2)],
ė3 = −ae1 − ae2 − ae3 + a[f3(x1)− f3(x2)].

(13)

As can be deduced, when (13) reaches equilibrium, the variables involved
reach synchronization, this means:

lim
t→∞

∥∥[x1 y1 z1]T − [x2 y2 z2]T
∥∥ = 0. (14)

By setting ė1 = ė2 = ė3 = 0, one obtains the equilibrium point, whose
stability is analyzed by using the following Lyapunov candidate function

V (e) =
1

2
(be21 + 2e1e3 + be22 + 2e2e3 + be23), V (e) > 0 for b >

√
2. (15)

The matricial form of V̇ (e) = eTQe evaluated along the trajectories of the
synchronization error system (13), allows to show V̇ (e) negative definiteness
by showing Q positive definiteness. Therefore, if

Q =

 (2bc+ a) − 1
2 (b− 2a) q1

− 1
2 (b− 2a) a q2
q1 q2 (ba− 1)

 , (16)

where
q1 = 1

2 (a+ ba+ 2c),
q2 = − 1

2 (1 + b− a− ba),
(17)

we determine that 1st and 2nd principal minors of matrix Q, i.e., (2bc+ a) > 0
and a(2bc+a)− 1

4 (b−2a)2 > 0 for c > 0 so that, positive definiteness of matrix
Q depends on its 3rd principal minor given by

|M3| = −
(
4
5

)
c2 −

(
1
50b

3 − 67
50b

2 + 58
25b+ 4

5

)
c

−
(

4
25b

3 − 77
100b

2 + 29
25b+ 1

5

)
,

(18)

for a = 0.8. Figure 4 shows the range of the coupling strength c as function of
the parameter of the Lyapunov candidate function b to assure the positiveness
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Fig. 4. Lower and upper boundary of the coupling strength c as function of the
parameter b obtained from (18)

of M3. By choosing the coupling strength within the range given, the stability
of the synchronization error system (13) is guaranteed, thus, variables involved
will synchronize. For further details on this procedure please refer to [23].

In the following, we will present the synchronization results of the small-
world network (9), by applying the computed coupling strength, given in Fig.
4, to show it is big enough to take the network to behave in a synchronous way,
but small enough to produce a less invasive control law. We assigned arbitrary
initial conditions within the range [−15, 15], and set the parameter b = 5
and the corresponding coupling strength at c = 1 with a probability p = 0.3
to produce the following synchronization results: Figure 5a shows the time
evolution of z(t) state variable of some chaotic oscillators randomly chosen.
The time evolution of e2(t), which denotes the synchronization error between
y(t) states variables, is shown in Fig. 5b to confirm synchronization in the
second state variable.

The phase portraits between x(t) variables of some arbitrary chosen oscilla-
tors are shown in Fig. 6. The multi-scroll chaotic attractor of the final dynamic
is embedded in Fig. 6 as well.

6 Conclusion

In this work the synchronization of complex networks with small-world topol-
ogy, composed of multi-scroll chaotic oscillators was performed. Synchroniza-
tion was accomplished by using the coupling matrix technique and by applying
the control law only in one state. We highlight the fact that we computed the
coupling strength by using a procedure originally designed for other types of
networks, even though, we have shown it is possible to achieve synchronization
in small-world networks by using it. It is worth mentioning that the analysis
provides only sufficient stability conditions since it is based on the Lyapunov
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Fig. 5. (a) Time evolution of state variables zj(t) for j = 26, 53, 249, 130, where
synchronization can be observed. (b) Time evolution of e2j(t), which is the second
state variable of the synchronization error system, where j = 1, 2, 3, 4
stands the following combinations y5(t) − y28(t), y10(t) − y83(t), y32(t) − y70(t) and
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method. Therefore, the range of the coupling strength c is not unique and
other values that may lead the network to synchrony are not excluded.
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