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Abstract: The phenomenon of chaotic cross-waves generation in fluid free surface in 
two finite size containers is studied. The waves may be excited by harmonic 

axisymmetric deformations of the inner shell in the volume between two cylinders and in 

a rectangular tank when one wall is a flap wavemaker. Experimental observations have 

revealed that waves are excited in two different resonance regimes. The first type of 
waves corresponds to forced resonance, in which axisymmetric patterns are realized with 

eigenfrequencies equal to the frequency of excitation. The second kind of waves is 

parametric resonance waves and in this case the waves are "transverse", with their crests 

and troughs aligned perpendicular to the vibrating wall. These so-called cross-waves 
have frequencies equal to half of that of the wavemaker. The existence of chaotic 

attractors was established for the dynamical system presenting cross-waves and forced 

waves interaction at fluid free-surface in a volume between two cylinders of finite length.  

In the case of one cross-wave in a rectangular tank no chaotic regimes were found. 
Keywords: Cross-waves, Wavemaker, Fluid free sureface, Averaged systems, Parametric 

resonance, Chaotic simulation.  

 

1    Introduction 

TThhee  pphheennoommeennoonn  ooff  ccrroossss--wwaavveess    ggeenneerraattiioonn  iinn  ffrreeee--ssuurrffaaccee  wwaavveess  ooff  aa  fflluuiidd  

ccoonnffiinneedd  iinn  aa  rreeccttaanngguullaarr  ttaannkk  wwiitthh  tthhee  ffiinniittee  ddeepptthh  aanndd  oonnee  wwaallll  aass  aa  ffllaapp  

wwaavveemmaakkeerr  is rather known, Faraday, 1831, [3]. The waves may be excited by 

harmonic oscillations of wavemaker and depending on the vibration frequency 

both axisymmetric and non-symmetric wave patterns may arise. Experimental 

observations have revealed that waves are excited in two different resonance 

regimes. The first type of waves corresponds to forced resonance, in which 

axisymmetric patterns are realized with eigenfrequencies equal to the frequency 

of excitation. The second kind of waves is parametric resonance waves and in 

this case the waves are "transverse", with their crests and troughs aligned 
perpendicular to the vibrating wall. These so-called cross-waves have 

frequencies equal to half of that of the wavemaker, Faraday, 1831, [3]. To 

obtain a lucid picture of energy transmission from the wavemaker motion to the 

fluid free-surface motion the method of superposition, Lamé, 1852, [8], has 

been used. TThhiiss  mmeetthhoodd  aalllloowwss  ttoo  ccoonnssttrruucctt  aa  ssiimmppllee  mmaatthheemmaattiiccaall  mmooddeell,,  wwhhiicchh  

sshhoowwss  hhooww  tthhee  ccrroossss--wwaavveess  ccaann  bbee  ggeenneerraatteedd  ddiirreeccttllyy  bbyy  tthhee  wwaavveemmaakkeerr..  AAllll      

pprreevviioouuss  tthheeoorriieess  hhaavvee  ccoonnssiiddeerreedd  ccrroossss--wwaavveess  pprroobblleemm  aappppllyyiinngg  tthhee  
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HHaavveelloocckk’’ss,,  11992299,,  [[22]],,  ssoolluuttiioonn  ooff  tthhee  wwaavveemmaakkeerr  pprroobblleemm  ffoorr  aa  sseemmii--iinnffiinniittee  

ttaannkk  wwiitthh  aann  iinnffiinniittee  ddeepptthh  aanndd  aa  rraaddiiaattiioonn  ccoonnddiittiioonn  iinnsstteeaadd  ooff  zzeerroo  vveelloocciittyy  

ccoonnddiittiioonn  aatt  tthhee  ffiinniittee  bboottttoomm..   

As the second task the phenomenon of deterioration of fluid free-surface waves 

between two cylindrical shells when the inner wall vibrates radially is 

considered in the present paper.  

 

2    Approximation of Cross-waves in Rectangular Container 

Let us theoretically consider the nonlinear problems of fluid free-surface waves 

which are excited by a flap wavemaker at one wall of rectangular tank of a finite 

length and depth. From the experimental observations, Krasnopolskaya, 2013, 

[6], we may conclude that the pattern formation has a resonance character, every 

pattern having its "own" frequency. Assuming that the fluid is inviscid and 

incompressible, and that the induced motion is irrotational, the velocity field can 

be written as v . Let us consider that patterns can be described in terms of 

normal modes with characteristic eigenfrequencies, we approximate free surface 

displacement waves, when the excitation frequency   is twice as large as one 

of the eigenfrequencies, i.e. 2 nm  , and also  is close to other 

eigenfrequency   0l  ,    as  a function written in the form 

00( ) cos cos ( ) cos .nm lo

n x m y l x
t t

L b L

  
                       (2.1)  

When
3/2

1( ) ( )nm t O  , 1( )lo O  , 1( )lo O   and

2

1
nma

g


   

Where a is an amplitude of wavemaker oscillations, L is the length, b is the 

width and h is the depth of the fluid container. Then a potential of fluid velocity 

1 2 0       as the solution of the harmonic equation and according to [5] 

has following components 
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1
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Where 
1/2

1( ) ( )nm t O  and 1( )lo O   

Using kinematical free-surface boundary conditions, Krasnopolskaya, 2012, [5],  
2

0 1 0 1 1 2( ) ( ) ( ) ( ) ( ) ( )z z zz zz zzz zz                 

1 1 0 2( ) ( ) ( ) ( )t x x y y x x y y                 

1 1( ) ( )xz x yz y     ,  

we may find that the amplitude of the resonant cross-wave mode is 

;cos)( 1 tD
hthkk
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nmnm
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                                                  (2.2) 

when   
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Applying the dynamical boundary condition  
2

0 1 1 1 2( ) ( ) ( ) ( ) ( )t t tz tzz t g             

2 2 2

1 1 1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x y z x x y y z z                    

1 0 1 0 1 1( ) ( ) ( ) ( ) ( ) ( )x x z z z zz             

1 1 1 1 0( ) ( ) ( ) ( ) ( ),x xz y yz F t         

we can get for the resonant amplitude an equation of parametric oscillations 

2 2 2 3 2 29 3

16 4
nm nm nm nm nm nm nm nm nmk k           

1 2 1 5sin cos 0.nm nmD t D t                             (2.3) 

 We can write it for the rectangular tank with 50L   m, h= 2.5 m, 6.8b  m  

and for the wave numbers 40n  , 10m   in the form 

2 2 2 3 2 29 3

16 4
nm nm nm nm nm nm nm nm nmk k          

20.0478 sin 0.0299 cos 0.nm nm nm nmt t                   (2.4) 
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Where 

2 2

2 ,nm

n m
k

L b

    
    
   

 the frequency is 2 1.143nm  Hz. We 

may use the transformation to the dimensionless variables   /nml   , p , 

,nmt   and finally get a dynamical system (when 2 2.27  Hz and 

0.26  m) in the following form 

3 21.0504 1.4003 0.0478 sin(2 ) 0.0299 cos(2 )p l p l lp Al Ap

l p

            

  

This system (at 2
nm




  =0.014 and additional damping forces 

with 0.01  ) has for any initial conditions only regular solutions. As an 

example in the fig.1 the phase portraits for different values of parameter A 

(which is proportional to the amplitude of wavemaker oscillations) are shown. 

Power spectra are presented in fig.2. They are discrete for  different values of A. 

 
a) 12A  

 
b) 27A  

 

Fig. 1. Phase portraits for different values of wavemaker oscillations A. 

 

 
a) 12A  

 
b) 27A  

 

Fig. 2. Power spectra computed for l time realization for different A.   
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3    Two Mode Model of Cross-waves in a Cylindrical Tank 

Now we theoretically consider the nonlinear problems of fluid free-surface 

waves which are excited by inner shell vibrations in a volume between two 

cylinders of finite length. It is useful to relate the fluid motion to the cylindrical 

coordinate system ( , , )r x . The fluid has an average depth d ; the average 

position of the free surface is taken as 0x  , so that the solid tank bottom is at 

x d  . The fluid is confined between a solid outer cylinder at 2r R  and a 

deformable inner cylinder (which acts as the wavemaker)  at average radius 
01

1 1 0 1 0( ) cos( ) 2 /
d

R r a d x dx r a 


    . This inner cylinder vibrates 

harmonically in such a way that the position of the wall of the inner cylinder is 

1 1 1 0 1 0( , ) ( cos )cos 2 /r R x t R a a t x a         ,where / (2 )d  .  

The potential   can be written as the sum of three harmonic functions 

0 1 2      , Lamé, 1852, [8]. The solution of the linear problem for 1  can 

be written in the form, Krasnopolskaya, 1996,  [4] 

 

, ,
1

0 1

cosh ( )
( ) ( , ),

cosh

i jc s c s
i j i j

i j i j i j

k x d
t r

N k d
   

 

 


    (3.1) 

 

on the complete systems of azimuthal ( cosi , sin i ), and radial 

eigenfunctions 
1

1

( )
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( )

i i j

i j i j i i j i i j

i i j
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k r J k r Y k r

Y k R






  , with some 

arbitrary amplitudes 
, ( )c s

i j t . In the solution (3.1) the notations 

, ( , ) ( )(cos ,sin )c s
i j i j i jr k r i i      are used, where iJ  and iY  are the i -th 

order Bessel functions of the first and the second kind, respectively, and i jN  is 

a normalization constant, where the index c  (or s ) indicates that the 

eigenfunction cos i  (or sin i ) is chosen as the circumferential component; 

i jk  represents eigen wave numbers. The system of functions ( , )i j r  , with 

0,1,2,...i   and 1,2,3,...j  , is a complete orthogonal system, so any 

function of the variables r  and   can be represented using the usual procedure 

of Fourier series expansion. Thus, the free surface displacement 

0( , , ) ( )r t t    can be written as ( 0 ( )t is the mean level of fluid free 

surface oscillations) 

 
,
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0

0 1
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( , , ) ( ) ( ) .

c s
i jc s

i j
i j i j

r
r t t t
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 
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 
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Under a parametric resonance, when the excitation frequency is twice as large as 

one of the eigenfrequencies, i.e. 2 nm  , and according the experimental 

observations we may assume that the free-surface displacement can be 

approximated by two resonant modes. So that we may write [4] 

0 0 0
0

1 1
( , ) ( )c

nm nm l l
nm l

r r
N N

                                               (3.3) 

 

where 0l is the axisymmetric mode which has the eigenfrequency by a value 

very close to  , i.e. 0l  . From the experimental observations follows 

that cross-waves has ampliteds much bigger than the amplitudes of the forced 

waves with the frequency   of the wavemaker vibrations. So that we can seek 

the unknown functions in the form 

 

1/2

1 1 1 1 1 1

0 1 0 2 1 2 1

( ) ( )cos ( )sin ;
2 2

( ) ( )cos ( )sin ,

nm

l

t t
t p q

t p t q t

 
   

      


 

  
 

                                (3.4)    

where 
1

1 th( )nm nmk k h  , 

2

1
g

nma
   is a small parameter, 1 1

1

4
t    

 is a dimensionless slow time, 0 0

1

0th( )l lk k h  . By substitution of the 

expressions (3.4) into boundary conditions, Krasnopolskaya, 1996, [4] and 

averaging over the fast time t  we finally obtain the dynamical system in the 

form, Krasnopolskaya, 2013, [7], 

 

1
1 1 3 1 1 2 1 2

1

1
1 1 3 1 1 2 1 2

1

2
2 2 2 4 1 1

1

2 22
2 2 2 4 1 1 5

1
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2 ;
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p q q q p p q
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dq
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dq
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   
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                                      (3.5) 
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where 
2

1
6 2

1 1( )
2

p q


 
 

 


 


, 

nm





 ,  is the ratio of actual to 

critical damping of the mode, i (i=1,2,…6) are constant coefficients. The 

dynamical system (3.5) is nonlinear, so numerical solutions were obtained. We 

used the following coefficients (Becker, 1991, [1], Krasnopolskaya, 1996, [4]) 

and data: 

 0.01; 3 =1.3k; 4 =0.25; 5 =0.235k; 6 =1.12; = -1.531; 

1 1 2 2(0) (0) (0) (0)p q p q    0.5. 

For these parameters and for different values of k (which is dimensionless 

amplitude of the wavemaker vibrations) extensive numerical calculations were 

carried out in order to find all steady state regimes. In Figure 3 dependences of 

the maximum Lyapunov exponents on value k are shown for the different values 

of the detuning parameters  1  and 2  . 

 
a) at 1 0,   2 0.2   

 
b) at 1 0.2,   2 0   

 

Fig. 3. The dependence of the maximum Lyapunov exponent on value k.  

 

Comparing these dependencies we may conclude that the dynamical system, 

which corresponds to the case when there is no detuning between the half of the 

frequency of excitation   and the  eigenfrequency of the cross-waves  nm , 

i.e. 1 =0, and there is the detuning of frequencies for the axisymmetric mode  

2 =0.2, has chaotic regimes in the wider area of  the parameter k changing. 

To demonstrate this we show in Figure 4 and 6 the phase portraits of solutions 

for the first case and the second when 1 0.2   and there is no detuning for the 

axisymmetric mode, i.e. 2 =0. In Figure 4 c) we have the chaotic attractor and 

in Figure 6 c) the regular cycle. And in Figure 4 attractors occupy bigger areas.  

Power spectra for considered cases are show in Figures 5 and 7 correspondently. 
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a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig.4. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d)  

when 1 0,   2 0.2  . 

 

 
a) 0.5k   

 
b) 0.8k   
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c) 1k   

 
d) 3k   

Fig. 5. Power spectra computed for 1p  data  (cases a, b, c and d) when 1 0,   

2 0.2  . 

 
a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig.6. Phase portraits for regular (cases a, b) and chaotic regimes (cases c, d) 

when 1 0.2,   2 0  . 
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a) 0.5k   

 
b) 0.8k   

 
c) 1k   

 
d) 3k   

Fig. 7. Power spectra computed for 1p  data  (cases a, b, c and d) for the case 

when 1 0.2,   2 0  . 

As we may conclude from numerical data and graphs in Figures 3-7 the 

dynamical system (3.5) has both regular and chaotic regimes. The chaotic 

regimes could be realized when 1k  for the first case and 1.6k   for the 

second considered case. For such values of corresponding amplitudes of 

wavemaker oscillations the largest Lyapunov exponents are positive, phase 

portraits have complicated structures of trajectory sets and power spectra are 

continuous ones. 

 

4    Conclusions 

Two new models expressing interaction of two eigenmodes at the condition of 

parametric resonances for the cross-waves of fluid free surface oscillations are 

developed.  Models are simulated. The existence of chaotic attractors was 

established for the dynamical system presenting cross-waves and forced waves 
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interaction at fluid free-surface in a volume between two cylinders of finite 

length. For the system describing resonant cross-waves in the rectangular tank 

no chaotic regimes were found because the connection coefficients of cross-

waves with the axisymmetric waves under the forced resonance are values on 

much smaller order then considered here. So that there are less factors to 

destabilize the system. 
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